Compare commits

...

2 Commits

Author SHA1 Message Date
Richard Wong b01ca4f395 Feat: implement hybrid fine-tuning of encoder and decoder networks
separately
2024-12-10 23:40:10 +09:00
Richard Wong 446ed1429c feat: end-to-end code needed for deployment that includes preprocess,
mapping, post-process (de-duplication)
2024-12-02 14:57:03 +09:00
18 changed files with 1924 additions and 3 deletions

1
.gitignore vendored
View File

@ -0,0 +1 @@
*.zip

5
end_to_end/.README.md Normal file
View File

@ -0,0 +1,5 @@
# End to End deployment code
This code takes in an input dataframe (assuming that the server code already
processed json to python dataframe), and applies our mapping + threshold +
de_duplicate code.

5
end_to_end/.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
models
raw_data.csv
train_all.csv
__pycache__
*.pt

433
end_to_end/deduplication.py Normal file
View File

@ -0,0 +1,433 @@
# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from tqdm import tqdm
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
)
##################
# global parameters
##################
class BertEmbedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
self.model = model.to(self.device)
self.model = self.model.eval()
# self.model = torch.compile(self.model)
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# get last layer
embeddings = encoder_outputs.hidden_states[-1]
# get cls token embedding
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
all_embeddings.append(cls_embeddings)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
class T5Embedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
self.model = torch.compile(self.model)
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
embeddings = encoder_outputs.last_hidden_state
# Compute the mean pooling of the token embeddings
# mean_embedding = embeddings.mean(dim=1)
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
all_embeddings.append(mean_embedding)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)
batch2_size = batch2.size(0)
batch2.to(device)
# Prepare an empty tensor to store results
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
# Process batch1 in chunks
for i in range(0, batch1_size, chunk_size):
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
batch1_chunk.to(device)
# Expand batch1 chunk and entire batch2 for comparison
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
batch2_norms = batch2.norm(dim=1, keepdim=True)
# Compute cosine similarity for the chunk and store it in the final tensor
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
# Compute cosine similarity by matrix multiplication and normalizing
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
# Store the results in the appropriate part of the final tensor
cos_sim[i:i + chunk_size] = sim_chunk
return cos_sim
###################
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
batch_size: int
def __init__(self, input_df, batch_size):
self.input_df = input_df
self.batch_size = batch_size
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
# name = f"<NAME>{row['tag_name']}<NAME>"
element = f"{desc}{unit}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
# embedder = T5Embedder(train_data, checkpoint_path)
embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=self.batch_size)
return embedder.embeddings
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list
# we then map the local idx to the ship-level idx
def selection(cos_sim_matrix, source_mask, target_mask):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
# returns a potential 2d matrix of which columns have the highest values
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# this partial sorts and ensures we care only top_k are correctly sorted
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
# convert boolean to indices
condition_indices = np.where(source_mask)[0]
max_idx = condition_indices[max_idx]
return max_idx, max_score
####################
# global level
# obtain the full mdm_list
#####################
# fold level
def run_deduplication(
test_df,
train_df,
batch_size=1024,
threshold=0.9,
diagnostic=False
):
# TODO: replace this with a list of values to import
# too wasteful to just import everything
data_path = '../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
# set the fold
# import test data
df = test_df
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = "train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
# generate your embeddings
checkpoint_path = 'models/bert_model'
# cache embeddings
file_path = "train_embeds.pt"
if os.path.exists(file_path):
# Load the tensor if the file exists
tensor = torch.load(file_path, weights_only=True)
print("Loaded tensor")
else:
# Create and save the tensor if the file doesn't exist
print('generate train embeddings')
train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
tensor = train_embedder.make_embedding(checkpoint_path)
torch.save(tensor, file_path, weights_only=True)
print("Tensor saved to file.")
train_embeds = tensor
# if we can, we can cache the train embeddings and load directly
# we can generate the train embeddings once and re-use for every ship
# generate new embeddings for each ship
print('generate test embeddings')
test_embedder = Embedder(input_df=df, batch_size=batch_size)
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in tqdm(ships_list):
# ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
# map_local_index_to_global_index = ship_df.index.to_numpy()
# we want to subset the ship and only p_mdm values
ship_mask = df['ships_idx'] == ship_idx
map_local_index_to_global_index = np.where(ship_mask)[0]
ship_df = df[ship_mask].reset_index(drop=True)
# subset the test embeds
test_embeds = global_test_embeds[map_local_index_to_global_index]
# generate the cosine sim matrix for the ship level
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list to map answers back to the global answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1A: ensure that the predicted mapping labels are valid
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
pattern_match_mask = pattern_match_mask.astype(bool)
# anything not in the pattern_match_mask are hallucinations
# this has the same effect as setting any wrong generations as non-mdm
ship_answer_list[~pattern_match_mask] = False
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
# p_mdm_mask = ship_df['p_mdm']
# # assign false to any non p_mdm entries
# ship_answer_list[~p_mdm_mask] = False
# # modify pattern_match_mask to remove any non p_mdm values
# pattern_match_mask = pattern_match_mask & p_mdm_mask
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# create local copy of answer_list
ship_answer_list = answer_list.copy()
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
# selected_idx_list = sample_df.index.to_numpy()
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
# basic assumption check
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates_mask = ship_df['p_mapping'] == select_class
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = train_df['mapping'] == select_class
if sum(train_candidates_mask) == 0:
# it can be the case that the mdm-valid mapping class is not found in training data
# print("not found in training data", select_class)
ship_answer_list[selected_idx_list] = False
return ship_answer_list
# perform selection
# max_idx is the id
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# set the duplicate entries to False
ship_answer_list[selected_idx_list] = False
# then only set the one unique chosen value as True
if max_score > threshold:
ship_answer_list[max_idx] = True
return ship_answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
# this resulted in big improvement
if (sum(ship_df['p_mapping'] == select_class)) > 0:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
ship_local_indices = np.where(ship_answer_list)[0]
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
global_answer[ship_global_indices] = True
# we set all unselected values to None
df.loc[~global_answer, 'p_thing'] = None
df.loc[~global_answer, 'p_property'] = None
if diagnostic:
print(80 * '*')
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# print the results
print(f'accuracy: {accuracy:.5f}')
print(f'f1 score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
return df

214
end_to_end/mapper.py Normal file
View File

@ -0,0 +1,214 @@
import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
StoppingCriteria,
StoppingCriteriaList,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
from torch.nn.utils.rnn import pad_sequence
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Mapper():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
# set model to eval
self.model = model.eval()
self.model.cuda()
# self.model = torch.compile(self.model)
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}"
# 'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
# target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
# text_target=target,
# max_length=max_length,
padding=True,
truncation=True,
return_tensors="pt",
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask'])
def _custom_collate_fn(batch):
# Extract data and targets separately if needed
inputs = [item['input_ids'] for item in batch]
attention_masks = [item['attention_mask'] for item in batch]
# Pad data to the same length
padded_inputs = pad_sequence(inputs, batch_first=True)
padded_attention_masks = pad_sequence(attention_masks, batch_first=True)
return {'input_ids': padded_inputs, 'attention_mask': padded_attention_masks}
# create dataloader
self.dataloader = DataLoader(
datasets,
batch_size=batch_size,
collate_fn=_custom_collate_fn
)
def generate(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 120
pred_generations = []
# pred_labels = []
# self.model already assigned to device
# self.model.cuda()
# introduce early stopping so that it doesn't have to generate max length
class StopOnEndToken(StoppingCriteria):
def __init__(self, end_token_id):
self.end_token_id = end_token_id
def __call__(self, input_ids, scores, **kwargs):
# Check if the last token in any sequence is the end token
batch_stopped = input_ids[:, -1] == self.end_token_id
# only stop if all have reached end token
if batch_stopped.all():
return True # Stop generation for the entire batch
return False
# Define the end token ID (e.g., the ID for <eos>)
end_token_id = 32103 # property end token
# Use the stopping criteria
stopping_criteria = StoppingCriteriaList([StopOnEndToken(end_token_id)])
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
# pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
# disable if running on gpu's without tensor cores
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH,
# eos_token_id=32103,
# early_stopping=True,
use_cache=True,
stopping_criteria=stopping_criteria)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list

77
end_to_end/preprocess.py Normal file
View File

@ -0,0 +1,77 @@
# %%
import re
from replacement_dict import desc_replacement_dict, unit_replacement_dict
class Abbreviator:
def __init__(self, df):
self.df = df
def _count_abbreviation_occurrences(self, tag_descriptions, abbreviation):
"""Count the number of occurrences of the abbreviation in the list of machine descriptions."""
pattern = re.compile(abbreviation)
count = sum(len(pattern.findall(description)) for description in tag_descriptions)
return count
def _replace_abbreviations(self, tag_descriptions, abbreviations):
"""Replace the abbreviations according to the key-pair value provided."""
replaced_descriptions = []
for description in tag_descriptions:
for abbreviation, replacement in abbreviations.items():
description = re.sub(abbreviation, replacement, description)
replaced_descriptions.append(description)
return replaced_descriptions
def _cleanup_spaces(self, tag_descriptions):
# Replace all whitespace with a single space
replaced_descriptions = []
for description in tag_descriptions:
description_clean = re.sub(r'\s+', ' ', description)
replaced_descriptions.append(description_clean)
return replaced_descriptions
# remove all dots
def _cleanup_dots(self, tag_descriptions):
replaced_descriptions = []
for description in tag_descriptions:
description_clean = re.sub(r'\.', '', description)
replaced_descriptions.append(description_clean)
return replaced_descriptions
def run(self):
df = self.df
# %%
# Replace abbreviations
print("running substitution for descriptions")
# normalize to uppercase
# strip leading and trailing whitespace
df['tag_description'] = df['tag_description'].str.strip()
df['tag_description'] = df['tag_description'].str.upper()
# Replace whitespace-only entries with "NOVALUE"
# note that "N/A" can be read as nan
# replace whitespace only values as NOVALUE
df['tag_description']= df['tag_description'].fillna("NOVALUE")
df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
# perform actual substitution
tag_descriptions = df['tag_description']
replaced_descriptions = self._replace_abbreviations(tag_descriptions, desc_replacement_dict)
replaced_descriptions = self._cleanup_spaces(replaced_descriptions)
replaced_descriptions = self._cleanup_dots(replaced_descriptions)
df["tag_description"] = replaced_descriptions
# print("Descriptions after replacement:", replaced_descriptions)
# %%
print("running substitutions for units")
df['unit'] = df['unit'].fillna("NOVALUE")
df['unit'] = df['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
unit_list = df['unit']
new_unit = self._replace_abbreviations(unit_list, unit_replacement_dict)
new_unit = self._cleanup_spaces(new_unit)
df['unit'] = new_unit
return df

View File

@ -0,0 +1,291 @@
# substitution mapping for descriptions
# Abbreviations and their replacements
desc_replacement_dict = {
r'\bLIST\b': 'LIST',
# exhaust gas
r'\bE\. GAS\b': 'EXHAUST GAS',
r'\bEXH\.\b': 'EXHAUST',
r'\bEXH\b': 'EXHAUST',
r'\bEXHAUST\.\b': 'EXHAUST',
r'\bEXHAUST\b': 'EXHAUST',
r'\bBLR\.EXH\.\b': 'BOILER EXHAUST',
# temperature
r'\bTEMP\.\b': 'TEMPERATURE',
r'\bTEMP\b': 'TEMPERATURE',
r'\bTEMPERATURE\.\b': 'TEMPERATURE',
r'\bTEMPERATURE\b': 'TEMPERATURE',
# cylinder
r'\bCYL(\d+)\b': r'CYLINDER\1',
r'\bCYL\.(\d+)\b': r'CYLINDER\1',
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
r'\bCYL\.\b': 'CYLINDER',
r'\bCYL\b': 'CYLINDER',
# cooling
r'\bCOOL\.\b': 'COOLING',
r'\bCOOLING\b': 'COOLING',
r'\bCOOLER\b': 'COOLER',
r'\bCW\b': 'COOLING WATER',
r'\bC\.W\b': 'COOLING WATER',
r'\bJ\.C\.F\.W\b': 'JACKET COOLING FEED WATER',
r'\bJ\.C F\.W\b': 'JACKET COOLING FEED WATER',
r'\bJACKET C\.F\.W\b': 'JACKET COOLING FEED WATER',
r'\bCOOL\. F\.W\b': 'COOLING FEED WATER',
r'\bC\.F\.W\b': 'COOLING FEED WATER',
# sea water
r'\bC\.S\.W\b': 'COOLING SEA WATER',
r'\bCSW\b': 'COOLING SEA WATER',
r'\bC.S.W\b': 'COOLING SEA WATER',
# water
r'\bFEED W\.\b': 'FEED WATER',
r'\bFEED W\b': 'FEED WATER',
r'\bF\.W\b': 'FEED WATER',
r'\bF\.W\.\b': 'FEED WATER',
r'\bFW\b': 'FEED WATER',
# r'\bWATER\b': 'WATER',
r'\bSCAV\.\b': 'SCAVENGE',
r'\bSCAV\b': 'SCAVENGE',
r'\bINL\.\b': 'INLET',
r'\bINLET\b': 'INLET',
r'\bOUT\.\b': 'OUTLET',
r'\bOUTL\.\b': 'OUTLET',
r'\bOUTLET\b': 'OUTLET',
# tank
r'\bSTOR\.TK\b': 'STORAGE TANK',
r'\bSTOR\. TK\b': 'STORAGE TANK',
r'\bSERV\. TK\b': 'SERVICE TANK',
r'\bSETT\. TK\b': 'SETTLING TANK',
r'\bBK\b': 'BUNKER',
r'\bTK\b': 'TANK',
# PRESSURE
r'\bPRESS\b': 'PRESSURE',
r'\bPRESS\.\b': 'PRESSURE',
r'\bPRESSURE\b': 'PRESSURE',
r'PRS\b': 'PRESSURE', # this is a special replacement - it is safe to replace PRS w/o checks
# ENGINE
r'\bENG\.\b': 'ENGINE',
r'\bENG\b': 'ENGINE',
r'\bENGINE\b': 'ENGINE',
r'\bENGINE SPEED\b': 'ENGINE SPEED',
r'\bENGINE RUNNING\b': 'ENGINE RUNNING',
r'\bENGINE RPM PICKUP\b': 'ENGINE RPM PICKUP',
r'\bENGINE ROOM\b': 'ENGINE ROOM',
r'\bE/R\b': 'ENGINE ROOM',
# MAIN ENGINE
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E NO(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bME NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E\b': 'MAIN_ENGINE',
r'\bM/E(.)\b': r'MAIN_ENGINE \1', # M/E(S/P)
r'\bME(.)\b': r'MAIN_ENGINE \1', # ME(S/P)
r'\bM_E\b': 'MAIN_ENGINE',
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
# ENGINE variants
r'\bM_E_RPM\b': 'MAIN ENGINE RPM',
r'\bM/E_M\.G\.O\.\b': 'MAIN ENGINE MARINE GAS OIL',
r'\bM/E_H\.F\.O\.\b': 'MAIN ENGINE HEAVY FUEL OIL',
# GENERATOR ENGINE
r'\bGEN(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bGE(\d+)\b': r'NO\1 GENERATOR_ENGINE',
# ensure that we substitute only for terms where following GE is num or special
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
r'\bG/E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bG/E\b': r'GENERATOR_ENGINE',
r'\bG_E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bG_E\b': 'GENERATOR_ENGINE',
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
r'\bG/E_M\.G\.O\b': 'GENERATOR_ENGINE MARINE GAS OIL',
# DG
r'\bDG(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bDG\b': 'GENERATOR_ENGINE',
r'\bD/G\b': 'GENERATOR_ENGINE',
r'\bDG(\d+)\((.)\)\b': r'NO\1\2 GENERATOR_ENGINE', # handle DG2(A)
r'\bDG(\d+[A-Za-z])\b': r'NO\1 GENERATOR_ENGINE', # handle DG2A
# DG variants
r'\bDG_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
r'\bDG_LOAD\b': 'GENERATOR_ENGINE LOAD',
r'\bDG_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
r'\bDG_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
r'\bDG_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
r'\bD/G_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
r'\bD/G_LOAD\b': 'GENERATOR_ENGINE LOAD',
r'\bD/G_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
r'\bD/G_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
r'\bD/G_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
# MGE
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
# generator engine and mgo
r'\bG/E_M\.G\.O\.\b': r'GENERATOR_ENGINE MARINE GAS OIL',
r'\bG/E_H\.F\.O\.\b': r'GENERATOR_ENGINE HEAVY FUEL OIL',
# ultra low sulfur fuel oil
r'\bU\.L\.S\.F\.O\b': 'ULTRA LOW SULFUR FUEL OIL',
r'\bULSFO\b': 'ULTRA LOW SULFUR FUEL OIL',
# marine gas oil
r'\bM\.G\.O\b': 'MARINE GAS OIL',
r'\bMGO\b': 'MARINE GAS OIL',
r'\bMDO\b': 'MARINE DIESEL OIL',
# light fuel oil
r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
r'\bLFO\b': 'LIGHT FUEL OIL',
# heavy fuel oil
r'\bHFO\b': 'HEAVY FUEL OIL',
r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
# piston cooling oil
r'\bPCO\b': 'PISTON COOLING OIL',
r'\bP\.C\.O\.\b': 'PISTON COOLING OIL',
r'\bP\.C\.O\b': 'PISTON COOLING OIL',
r'PISTION C.O': 'PISTON COOLING OIL',
# diesel oil
r'\bD.O\b': 'DIESEL OIL',
# for remaining fuel oil that couldn't be substituted
r'\bF\.O\b': 'FUEL OIL',
r'\bFO\b': 'FUEL OIL',
# lubricant
r'\bLUB\.\b': 'LUBRICANT',
r'\bLUBE\b': 'LUBRICANT',
r'\bLUBR\.\b': 'LUBRICANT',
r'\bLUBRICATING\.\b': 'LUBRICANT',
r'\bLUBRICATION\.\b': 'LUBRICANT',
# lubricating oil
r'\bL\.O\b': 'LUBRICATING OIL',
r'\bLO\b': 'LUBRICATING OIL',
# lubricating oil pressure
r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
# temperature
r'\bL\.T\b': 'LOW TEMPERATURE',
r'\bLT\b': 'LOW TEMPERATURE',
r'\bH\.T\b': 'HIGH TEMPERATURE',
r'\bHT\b': 'HIGH TEMPERATURE',
# BOILER
# auxiliary boiler
# replace these first before replacing AUXILIARY only
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
r'\bAUX\. BOILER\b': 'AUXILIARY BOILER',
r'\bAUX BLR\b': 'AUXILIARY BOILER',
r'\bAUX\.\b': 'AUXILIARY',
r'\bAUX\b': 'AUXILIARY',
# composite boiler
r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP\b': 'COMPOSITE',
r'\bCMPS\b': 'COMPOSITE',
# any other boiler
r'\bBLR\.\b': 'BOILER',
r'\bBLR\b': 'BOILER',
r'\bBOILER W.CIRC.P/P\b': 'BOILER WATER CIRC P/P',
# windind
r'\bWIND\.\b': 'WINDING',
r'\bWINDING\b': 'WINDING',
# VOLTAGE/FREQ/CURRENT
r'\bVLOT\.': 'VOLTAGE', # correct spelling
r'\bVOLT\.': 'VOLTAGE',
r'\bVOLTAGE\b': 'VOLTAGE',
r'\bFREQ\.': 'FREQUENCY',
r'\bFREQUENCY\b': 'FREQUENCY',
r'\bCURR\.': 'CURRENT',
r'\bCURRENT\b': 'CURRENT',
# TURBOCHARGER
r'\bTCA\b': 'TURBOCHARGER',
r'\bTCB\b': 'TURBOCHARGER',
r'\bT/C\b': 'TURBOCHARGER',
r'\bT_C\b': 'TURBOCHARGER',
r'\bT/C_RPM\b': 'TURBOCHARGER RPM',
r'\bTC(\d+)\b': r'TURBOCHARGER\1',
r'\bT/C(\d+)\b': r'TURBOCHARGER\1',
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
r'\bTURBOCHAGER\b': 'TURBOCHARGER',
r'\bTURBOCHARGER\b': 'TURBOCHARGER',
r'\bTURBOCHG\b': 'TURBOCHARGER',
# misc spelling errors
r'\bOPERATOIN\b': 'OPERATION',
# wrongly attached terms
r'\bBOILERMGO\b': 'BOILER MGO',
# additional standardizing replacement
# replace # followed by a number with NO
r'#(?=\d)\b': 'NO',
r'\bNO\.(?=\d)\b': 'NO',
r'\bNO\.\.(?=\d)\b': 'NO',
# others:
# generator
r'\bGEN\.\b': 'GENERATOR',
# others
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
r'\bFLTR\b': 'FILTER',
r'\bCLR\b': 'CLEAR',
}
# substitution mapping for units
# Abbreviations and their replacements
unit_replacement_dict = {
r'\b%\b': 'PERCENT',
r'\b-\b': '',
r'\b- \b': '',
# ensure no character after A
r'\bA(?!\w|/)': 'CURRENT',
r'\bAmp(?!\w|/)': 'CURRENT',
r'\bHz\b': 'HERTZ',
r'\bKG/CM2\b': 'PRESSURE',
r'\bKG/H\b': 'KILOGRAM PER HOUR',
r'\bKNm\b': 'RPM',
r'\bKW\b': 'POWER',
r'\bKg(?!\w|/)': 'MASS',
r'\bKw\b': 'POWER',
r'\bL(?!\w|/)': 'VOLUME',
r'\bMT/h\b': 'METRIC TONNES PER HOUR',
r'\bMpa\b': 'PRESSURE',
r'\bPF\b': 'POWER FACTOR',
r'\bRPM\b': 'RPM',
r'\bV(?!\w|/)': 'VOLTAGE',
r'\bbar(?!\w|/)': 'PRESSURE',
r'\bbarA\b': 'SCAVENGE PRESSURE',
r'\bcST\b': 'VISCOSITY',
r'\bcSt\b': 'VISCOSITY',
r'\bcst\b': 'VISCOSITY',
r'\bdeg(?!\w|/|\.)': 'DEGREE',
r'\bdeg.C\b': 'TEMPERATURE',
r'\bdegC\b': 'TEMPERATURE',
r'\bdegree\b': 'DEGREE',
r'\bdegreeC\b': 'TEMPERATURE',
r'\bhPa\b': 'PRESSURE',
r'\bhours\b': 'HOURS',
r'\bkN\b': 'THRUST',
r'\bkNm\b': 'TORQUE',
r'\bkW\b': 'POWER',
# ensure that kg is not followed by anything
r'\bkg(?!\w|/)': 'FLOW', # somehow in the data its flow
r'\bkg/P\b': 'MASS FLOW',
r'\bkg/cm2\b': 'PRESSURE',
r'\bkg/cm²\b': 'PRESSURE',
r'\bkg/h\b': 'MASS FLOW',
r'\bkg/hr\b': 'MASS FLOW',
r'\bkg/pulse\b': '',
r'\bkgf/cm2\b': 'PRESSURE',
r'\bkgf/cm²\b': 'PRESSURE',
r'\bkgf/㎠\b': 'PRESSURE',
r'\bknots\b': 'SPEED',
r'\bkw\b': 'POWER',
r'\bl/Hr\b': 'VOLUME FLOW',
r'\bl/h\b': 'VOLUME FLOW',
r'\bl_Hr\b': 'VOLUME FLOW',
r'\bl_hr\b': 'VOLUME FLOW',
r'\bM\b': 'DRAFT', # for wind draft
r'm': 'm', # wind draft and trim - not useful
r'\bm/s\b': 'SPEED',
r'\bm3\b': 'VOLUME',
r'\bmH2O\b': 'DRAFT',
r'\bmWC\b': 'DRAFT',
r'\bmbar\b': 'PRESSURE',
r'\bmg\b': 'ACCELERATION',
r'\bmin-¹\b': '', # data too varied
r'\bmm\b': '', # data too varied
r'\bmmH2O\b': 'WATER DRUM LEVEL',
r'\brev\b': 'RPM',
r'\brpm\b': 'RPM',
r'\bx1000min-¹\b': '',
r'\b°C\b': 'TEMPERATURE',
r'\bºC\b': 'TEMPERATURE',
r'\b℃\b': 'TEMPERATURE'
}

65
end_to_end/run.py Normal file
View File

@ -0,0 +1,65 @@
# %%
import pandas as pd
import os
import glob
from mapper import Mapper
from preprocess import Abbreviator
from deduplication import run_deduplication
# global config
BATCH_SIZE = 512
SHIPS_LIST = [1000,1001,1003,1004]
# %%
# START: we import the raw data csv and extract only a few ships from it to simulate incoming json
data_path = 'raw_data.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# subset ships only to that found in SHIPS_LIST
df = full_df[full_df['ships_idx'].isin(SHIPS_LIST)].reset_index(drop=True)
# test parameters
num_rows = len(df) - 1
df = df[:num_rows]
print(len(df))
# pre-process data
abbreviator = Abbreviator(df)
df = abbreviator.run()
# %%
##########################################
# run mapping
# checkpoint
# Use glob to find matching paths
checkpoint_path = 'models/mapping_model'
mapper = Mapper(checkpoint_path)
mapper.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
thing_prediction_list, property_prediction_list = mapper.generate()
# add labels too
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
# Convert the list to a Pandas DataFrame
df_out = pd.DataFrame({
'p_thing': thing_prediction_list,
'p_property': property_prediction_list
})
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
df = pd.concat([df, df_out], axis=1)
# %%
####################################
# run de_duplication with thresholding
data_path = "train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
df = run_deduplication(
test_df=df,
train_df=train_df,
batch_size=BATCH_SIZE,
threshold=0.85,
diagnostic=True)
# %%

View File

@ -3,9 +3,7 @@ from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
DataCollatorWithPadding,
)
import torch.nn.functional as F
@ -24,7 +22,7 @@ class BertEmbedder:
self.model = model.eval()
def make_embedding(self, batch_size=64):
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
__pycache__

View File

@ -0,0 +1,125 @@
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import (
T5PreTrainedModel,
T5Model
)
from transformers.modeling_outputs import (
SequenceClassifierOutput,
)
def mean_pooling(encoder_outputs, attention_mask):
"""
Perform mean pooling over encoder outputs, considering the attention mask.
"""
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
masked_hidden_states = hidden_states * mask # Zero out padding tokens
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
return sum_hidden_states / sum_mask # Mean pooling
class T5EncoderForSequenceClassification(T5PreTrainedModel):
def __init__(self, checkpoint, tokenizer, config, num_labels):
super().__init__(config)
self.num_labels = num_labels
self.config = config
# we force the loading of a pre-trained model here
self.t5 = T5Model.from_pretrained(checkpoint)
self.t5.resize_token_embeddings(len(tokenizer))
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# encoder_outputs = self.t5.encoder(
# input_ids,
# attention_mask=attention_mask,
# head_mask=head_mask,
# inputs_embeds=inputs_embeds,
# output_attentions=output_attentions,
# output_hidden_states=output_hidden_states,
# return_dict=return_dict,
# )
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
# last_hidden_state = encoder_outputs.last_hidden_state
# use mean of hidden state
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
# Use the hidden state of the first token as the sequence representation
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
# pooled_output = encoder_outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + encoder_outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

View File

@ -0,0 +1,2 @@
__pycache__
exports/

View File

@ -0,0 +1,168 @@
import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Inference():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding="max_length",
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def generate(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
pred_generations = []
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list

View File

@ -0,0 +1,6 @@
Accuracy for fold 1: 0.9427354472314246
Accuracy for fold 2: 0.8859813084112149
Accuracy for fold 3: 0.9683734939759037
Accuracy for fold 4: 0.9762131303520457
Accuracy for fold 5: 0.907924874026569

View File

@ -0,0 +1,73 @@
import pandas as pd
import os
import glob
from inference import Inference
checkpoint_directory = '../'
BATCH_SIZE = 512
def infer_and_select(fold):
print(f"Inference for fold {fold}")
# import test data
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
##########################################
# run inference
# checkpoint
# Use glob to find matching paths
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
infer = Inference(checkpoint_path)
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
thing_prediction_list, property_prediction_list = infer.generate()
# add labels too
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
# Convert the list to a Pandas DataFrame
df_out = pd.DataFrame({
'p_thing': thing_prediction_list,
'p_property': property_prediction_list
})
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
df = pd.concat([df, df_out], axis=1)
# we can save the t5 generation output here
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
# here we want to evaluate mapping accuracy within the valid in mdm data only
in_mdm = df['MDM']
condition_correct_thing = df['p_thing'] == df['thing']
condition_correct_property = df['p_property'] == df['property']
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
# write output to file output.txt
with open("output.txt", "a") as f:
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
###########################################
# Execute for all folds
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
infer_and_select(fold)

View File

@ -0,0 +1,227 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
from safetensors.torch import load_file
from transformers import (
T5Config,
T5TokenizerFast,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainer,
EarlyStoppingCallback,
Seq2SeqTrainingArguments,
T5ForConditionalGeneration,
T5Model
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# outputs a list of dictionaries
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def create_split_dataset(fold):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
})
return combined_data
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}b'
split_datasets = create_split_dataset(fold)
# prepare tokenizer
model_checkpoint = "t5-small"
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
text_target=target,
max_length=max_length,
truncation=True,
padding="max_length"
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns=split_datasets["train"].column_names,
)
# https://github.com/huggingface/transformers/pull/28414
# model_checkpoint = "google/t5-efficient-tiny"
# device_map set to auto to force it to load contiguous weights
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
directory = os.path.join(".", f'checkpoint_fold_{fold}a')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
# t5_classify = T5Model.from_pretrained(prev_checkpoint)
# Load the checkpoint
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
checkpoint = load_file(checkpoint_path)
# Filter out weights related to the classification head
t5_weights = {key: value for key, value in checkpoint.items() if "classifier" not in key}
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
model.load_state_dict(state_dict=t5_weights, strict=False)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# Freeze the encoder
for param in model.encoder.parameters():
param.requires_grad = False
# Freeze the shared embedding layer
for param in model.shared.parameters():
param.requires_grad = False
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
metric = evaluate.load("sacrebleu")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds,
skip_special_tokens=False)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels,
skip_special_tokens=False)
# Remove <PAD> tokens from decoded predictions and labels
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
# Some simple post-processing
# decoded_preds = [pred.strip() for pred in decoded_preds]
# decoded_labels = [[label.strip()] for label in decoded_labels]
# print(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": result["score"]}
# Generation Config
# from transformers import GenerationConfig
gen_config = model.generation_config
gen_config.max_length = 128
# compile
# model = torch.compile(model, backend="inductor", dynamic=True)
# Trainer
args = Seq2SeqTrainingArguments(
f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
predict_with_generate=True,
bf16=True,
push_to_hub=False,
generation_config=gen_config,
remove_unused_columns=False,
)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)

View File

@ -0,0 +1,228 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
T5Config,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
mdm_list = sorted(list((set(full_df['pattern']))))
# # rather than use pattern, we use the real thing and property
# thing_property = full_df['thing'] + full_df['property']
# thing_property = thing_property.to_list()
# mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
# pattern = f"{row['thing'] + row['property']}"
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}a'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
# model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
model_checkpoint = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding="max_length"
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
# model = AutoModelForSequenceClassification.from_pretrained(
# model_checkpoint,
# num_labels=len(mdm_list),
# id2label=id2label,
# label2id=label2id)
model = T5EncoderForSequenceClassification(
checkpoint=model_checkpoint,
tokenizer=tokenizer,
config=T5Config.from_pretrained(model_checkpoint),
num_labels=len(mdm_list)
)
# important! after extending tokens vocab
# model.t5.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=128,
per_device_eval_batch_size=128,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%