Feat: added de_duplication post-processing method

This commit is contained in:
Richard Wong 2024-11-28 11:02:22 +09:00
parent 8dba46ded6
commit 737c86bc2e
21 changed files with 1182 additions and 113 deletions

View File

@ -0,0 +1,2 @@
exports
output.txt

View File

@ -0,0 +1,81 @@
# %%
import pandas as pd
# following code computes final mapping + classification accuracy
# %%
def run(fold):
data_path = f'exports/result_group_{fold}.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
p_mdm = df['p_mdm']
data_path = f'../../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
actual_mdm = df['MDM']
thing_correctness = df['thing'] == df['p_thing']
property_correctness = df['property'] == df['p_property']
answer = thing_correctness & property_correctness
# if is non-MDM -> then should be unmapped
# if is MDM -> then should be mapped correctly
# out of correctly predicted relevant data, how many are mapped correctly?
correct_positive_mdm_and_map = sum(p_mdm & actual_mdm & answer)
# number of correctly predicted non-relevant data
correct_negative_mdm = sum(~(p_mdm) & ~(actual_mdm))
overall_correct = (correct_positive_mdm_and_map + correct_negative_mdm)/len(actual_mdm)
print(overall_correct)
# %%
for fold in [1,2,3,4,5]:
run(fold)
# %%
# check for "duplicates" in each ship
# we want to enforce a unique mapping
fold = 1
data_path = f'exports/result_group_{fold}.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
# get predicted mdm labels
p_mdm = df['p_mdm'].to_numpy()
predicted_mdm_mask = p_mdm.astype(bool)
# %%
# get the mapped data
data_path = f'../../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
df = pd.read_csv(data_path, skipinitialspace=True)
df['mapping'] = df['p_thing'] + ' ' + df['p_property']
# get ship list
ship_list = sorted(list(set(df['ships_idx'])))
# assign ship
ship = ship_list[1]
ship_boolean_mask = df['ships_idx'] == ship
# isolate predicted mdm data of the ship
ship_predicted_mdm_mask = predicted_mdm_mask & ship_boolean_mask
mapping_list = df['mapping'][ship_predicted_mdm_mask].to_list()
mapping_count = {}
for mapping in mapping_list:
if mapping in mapping_count:
mapping_count[mapping] = mapping_count[mapping] + 1
else:
mapping_count[mapping] = 1
# print the mapping count
mapping_count
# %%
# we can take one of the elements that exceeded 1 mapping and check
df_ship = df[ship_predicted_mdm_mask]
df_ship[df_ship['mapping'] == 'GeneratorEngine2 RunningState']
# %%

View File

@ -1,31 +1,51 @@
********************************************************************************
Fold: 1
Accuracy: 0.95174
F1 Score: 0.90912
Precision: 0.91788
Recall: 0.90092
tp: 1808
tn: 10692
fp: 269
fn: 305
Accuracy: 0.95610
F1 Score: 0.86301
Precision: 0.87049
Recall: 0.85566
********************************************************************************
Fold: 2
Accuracy: 0.95159
F1 Score: 0.92593
Precision: 0.91697
Recall: 0.93574
tp: 1932
tn: 8304
fp: 278
fn: 208
Accuracy: 0.95467
F1 Score: 0.88828
Precision: 0.87421
Recall: 0.90280
********************************************************************************
Fold: 3
Accuracy: 0.95373
F1 Score: 0.93021
Precision: 0.91935
Recall: 0.94233
tp: 1789
tn: 7613
fp: 250
fn: 203
Accuracy: 0.95403
F1 Score: 0.88762
Precision: 0.87739
Recall: 0.89809
********************************************************************************
Fold: 4
Accuracy: 0.96524
F1 Score: 0.92902
Precision: 0.91306
Recall: 0.94702
tp: 1967
tn: 12929
fp: 420
fn: 135
Accuracy: 0.96408
F1 Score: 0.87636
Precision: 0.82405
Recall: 0.93578
********************************************************************************
Fold: 5
Accuracy: 0.95643
F1 Score: 0.92319
Precision: 0.91793
Recall: 0.92869
tp: 1915
tn: 10381
fp: 405
fn: 268
Accuracy: 0.94811
F1 Score: 0.85054
Precision: 0.82543
Recall: 0.87723

View File

@ -27,6 +27,9 @@ from tqdm import tqdm
torch.set_float32_matmul_precision('high')
BATCH_SIZE = 256
# %%
# %%
@ -158,7 +161,6 @@ def test(fold):
actual_labels = []
BATCH_SIZE = 64
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
@ -181,6 +183,17 @@ def test(fold):
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
pred_labels = np.array(pred_labels, dtype=bool)
# append the mdm prediction to the test_df for analysis later
df_out = pd.DataFrame({
'p_mdm': pred_labels,
})
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
df_export = pd.concat([test_df, df_out], axis=1)
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
# %%
@ -190,15 +203,23 @@ def test(fold):
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
cm = confusion_matrix(y_true, y_pred)
tn, fp, fn, tp = cm.ravel()
with open("output.txt", "a") as f:
print('*' * 80, file=f)
print(f'Fold: {fold}', file=f)
# Print the results
print(f"tp: {tp}", file=f)
print(f"tn: {tn}", file=f)
print(f"fp: {fp}", file=f)
print(f"fn: {fn}", file=f)
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)

View File

@ -104,8 +104,8 @@ def train(fold):
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-uncased'
model_checkpoint = "distilbert/distilbert-base-cased"
# model_checkpoint = 'google-bert/bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
@ -180,13 +180,13 @@ def train(fold):
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
per_device_train_batch_size=128,
per_device_eval_batch_size=128,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,

View File

@ -0,0 +1,2 @@
output*
__pycache__

View File

@ -0,0 +1,313 @@
# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from utils import T5Embedder, BertEmbedder, cosine_similarity_chunked
from tqdm import tqdm
##################
# global parameters
DIAGNOSTIC = False
BATCH_SIZE = 1024
###################
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
def __init__(self, input_df):
self.input_df = input_df
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
name = f"<NAME>{row['tag_name']}<NAME>"
element = f"{desc}{unit}{name}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
embedder = T5Embedder(train_data, checkpoint_path)
# embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=BATCH_SIZE)
return embedder.embeddings
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list
# we then map the local idx to the ship-level idx
def selection(cos_sim_matrix, source_mask, target_mask):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
# returns a potential 2d matrix of which columns have the highest values
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# this partial sorts and ensures we care only top_k are correctly sorted
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
# convert boolean to indices
condition_indices = np.where(source_mask)[0]
max_idx = condition_indices[max_idx]
return max_idx, max_score
####################
# global level
# obtain the full mdm_list
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
#####################
# fold level
def run_selection(fold):
# set the fold
# import test data
# data_path = f"../binary_classifier/classification_prediction/exports/result_group_{fold}.csv"
data_path = f"../similarity_classifier/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
predicted_mdm = df['p_mdm'].to_numpy().astype(bool)
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df['p_mdm'] = predicted_mdm
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
# generate your embeddings
# checkpoint_directory defined at global level
# checkpoint_directory = "../../train/classification_bert_pattern_desc_unit"
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit_name"
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
# we can generate the train embeddings once and re-use for every ship
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# generate new embeddings for each ship
test_embedder = Embedder(input_df=df)
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in tqdm(ships_list):
# ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
# map_local_index_to_global_index = ship_df.index.to_numpy()
# we want to subset the ship and only p_mdm values
ship_mask = df['ships_idx'] == ship_idx
p_mdm_mask = df['p_mdm']
map_local_index_to_global_index = np.where(ship_mask & p_mdm_mask)[0]
ship_df = df[ship_mask & p_mdm_mask].reset_index(drop=True)
# subset the test embeds
test_embeds = global_test_embeds[map_local_index_to_global_index]
# generate the cosine sim matrix for the ship level
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list to map answers back to the global answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1A: ensure that the predicted mapping labels are valid
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
pattern_match_mask = pattern_match_mask.astype(bool)
# anything not in the pattern_match_mask are hallucinations
# this has the same effect as setting any wrong generations as non-mdm
ship_answer_list[~pattern_match_mask] = False
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
# p_mdm_mask = ship_df['p_mdm']
# # assign false to any non p_mdm entries
# ship_answer_list[~p_mdm_mask] = False
# # modify pattern_match_mask to remove any non p_mdm values
# pattern_match_mask = pattern_match_mask & p_mdm_mask
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# create local copy of answer_list
ship_answer_list = answer_list.copy()
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
# selected_idx_list = sample_df.index.to_numpy()
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
# basic assumption check
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates_mask = ship_df['p_mapping'] == select_class
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = train_df['mapping'] == select_class
if sum(train_candidates_mask) == 0:
# it can be the case that the mdm-valid mapping class is not found in training data
# print("not found in training data", select_class)
ship_answer_list[selected_idx_list] = False
return ship_answer_list
# perform selection
# max_idx is the id
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# set the duplicate entries to False
ship_answer_list[selected_idx_list] = False
# then only set the one unique chosen value as True
ship_answer_list[max_idx] = True
return ship_answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
# this resulted in big improvement
if (sum(ship_df['p_mapping'] == select_class)) > 0:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
ship_local_indices = np.where(ship_answer_list)[0]
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
global_answer[ship_global_indices] = True
if DIAGNOSTIC:
# evaluation at per-ship level
y_true = ship_df['MDM'].to_list()
y_pred = ship_answer_list
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
with open("output.txt", "a") as f:
print(80 * '*', file=f)
print(f'Statistics for fold {fold}', file=f)
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}", file=f)
print(f"tn: {tn}", file=f)
print(f"fp: {fp}", file=f)
print(f"fn: {fn}", file=f)
# compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# print the results
print(f'accuracy: {accuracy:.5f}', file=f)
print(f'f1 score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
# %%
for fold in [1,2,3,4,5]:
print(f'Perform selection for fold {fold}')
run_selection(fold)
# %%

View File

@ -0,0 +1,132 @@
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
DataCollatorWithPadding,
)
import torch.nn.functional as F
class BertEmbedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_embedding(self, batch_size=64):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.no_grad():
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# get last layer
embeddings = encoder_outputs.hidden_states[-1]
# get cls token embedding
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
all_embeddings.append(cls_embeddings)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
class T5Embedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
embeddings = encoder_outputs.last_hidden_state
# Compute the mean pooling of the token embeddings
# mean_embedding = embeddings.mean(dim=1)
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
all_embeddings.append(mean_embedding)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)
batch2_size = batch2.size(0)
batch2.to(device)
# Prepare an empty tensor to store results
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
# Process batch1 in chunks
for i in range(0, batch1_size, chunk_size):
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
batch1_chunk.to(device)
# Expand batch1 chunk and entire batch2 for comparison
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
batch2_norms = batch2.norm(dim=1, keepdim=True)
# Compute cosine similarity for the chunk and store it in the final tensor
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
# Compute cosine similarity by matrix multiplication and normalizing
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
# Store the results in the appropriate part of the final tensor
cos_sim[i:i + chunk_size] = sim_chunk
return cos_sim

View File

@ -1,2 +1 @@
__pycache__
output.txt
__pycache__

View File

@ -0,0 +1,41 @@
tp: 1738
tn: 10744
fp: 217
fn: 375
accuracy: 0.95472
f1 score: 0.85447
Precision: 0.88900
Recall: 0.82253
tp: 1794
tn: 8302
fp: 280
fn: 346
accuracy: 0.94162
f1 score: 0.85145
Precision: 0.86500
Recall: 0.83832
tp: 1755
tn: 7598
fp: 265
fn: 237
accuracy: 0.94906
f1 score: 0.87488
Precision: 0.86881
Recall: 0.88102
tp: 1911
tn: 13079
fp: 270
fn: 191
accuracy: 0.97016
f1 score: 0.89237
Precision: 0.87620
Recall: 0.90913
tp: 1826
tn: 10540
fp: 246
fn: 357
accuracy: 0.95350
f1 score: 0.85828
Precision: 0.88127
Recall: 0.83646

View File

@ -0,0 +1,299 @@
# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from utils import T5Embedder, BertEmbedder, cosine_similarity_chunked
from tqdm import tqdm
##################
# global parameters
DIAGNOSTIC = False
THRESHOLD = 0.95
BATCH_SIZE = 1024
###################
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
def __init__(self, input_df):
self.input_df = input_df
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
name = f"<NAME>{row['tag_name']}<NAME>"
element = f"{desc}{unit}{name}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
embedder = T5Embedder(train_data, checkpoint_path)
# embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=BATCH_SIZE)
return embedder.embeddings
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list
# we then map the local idx to the ship-level idx
def selection(cos_sim_matrix, source_mask, target_mask):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
# returns a potential 2d matrix of which columns have the highest values
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
# convert boolean to indices
condition_indices = np.where(source_mask)[0]
max_idx = condition_indices[max_idx]
return max_idx, max_score
####################
# global level
# obtain the full mdm_list
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
#####################
# fold level
def run_selection(fold):
# set the fold
# import test data
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# df['p_pattern'] = df['p_thing'] + " " + df['p_property']
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
# generate your embeddings
# checkpoint_directory defined at global level
# checkpoint_directory = "../../train/classification_bert_pattern_desc_unit"
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit_name"
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
# we can generate the train embeddings once and re-use for every ship
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# generate new embeddings for each ship
test_embedder = Embedder(input_df=df)
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in tqdm(ships_list):
# ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
# map_local_index_to_global_index = ship_df.index.to_numpy()
map_local_index_to_global_index = np.where(df['ships_idx'] == ship_idx)[0]
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
# subset the test embeds
test_embeds = global_test_embeds[map_local_index_to_global_index]
# generate the cosine sim matrix for the ship level
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list to map answers back to the global answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1
# we want to loop through the generated class labels and find which ones match
# our pattern list
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
pattern_match_mask = pattern_match_mask.astype(bool)
# anything not in the pattern_match_mask are hallucinations
# this has the same effect as setting any wrong generations as non-mdm
ship_answer_list[~pattern_match_mask] = False
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# create local copy of answer_list
ship_answer_list = answer_list.copy()
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
# selected_idx_list = sample_df.index.to_numpy()
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
# basic assumption check
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates_mask = ship_df['p_mapping'] == select_class
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = train_df['mapping'] == select_class
if sum(train_candidates_mask) == 0:
# it can be the case that the mdm-valid mapping class is not found in training data
# print("not found in training data", select_class)
ship_answer_list[selected_idx_list] = False
return ship_answer_list
# perform selection
# max_idx is the id
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# set the duplicate entries to False
ship_answer_list[selected_idx_list] = False
# before doing this, we have to use the max_score and evaluate if its close enough
if max_score > THRESHOLD:
ship_answer_list[max_idx] = True
return ship_answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
# this resulted in big improvement
if (sum(ship_df['p_mapping'] == select_class)) > 0:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
ship_local_indices = np.where(ship_answer_list)[0]
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
global_answer[ship_global_indices] = True
if DIAGNOSTIC:
# evaluation at per-ship level
y_true = ship_df['MDM'].to_list()
y_pred = ship_answer_list
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
with open("output.txt", "a") as f:
print(80 * '*', file=f)
print(f'Statistics for fold {fold}', file=f)
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}", file=f)
print(f"tn: {tn}", file=f)
print(f"fp: {fp}", file=f)
print(f"fn: {fn}", file=f)
# compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# print the results
print(f'accuracy: {accuracy:.5f}', file=f)
print(f'f1 score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
# %%
for fold in [1,2,3,4,5]:
print(f'Perform selection for fold {fold}')
run_selection(fold)

View File

@ -1,12 +1,56 @@
import torch
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
DataCollatorWithPadding,
)
import torch.nn.functional as F
class Retriever:
class BertEmbedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_embedding(self, batch_size=64):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.no_grad():
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# get last layer
embeddings = encoder_outputs.hidden_states[-1]
# get cls token embedding
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
all_embeddings.append(cls_embeddings)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
class T5Embedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
@ -14,7 +58,7 @@ class Retriever:
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<thing_start>", "<thing_end>", "<property_start>", "<property_end>", "<name>", "<desc>", "<sig>", "<unit>", "<data_type>"]
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
@ -27,7 +71,7 @@ class Retriever:
def make_mean_embedding(self, batch_size=32):
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
@ -54,6 +98,7 @@ class Retriever:
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)

2
post_process/selection_old/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
__pycache__
output.txt

View File

@ -1,13 +1,14 @@
# %%
import pandas as pd
import os
import glob
# directory for checkpoints
checkpoint_directory = '../../train/mapping_with_unit'
checkpoint_directory = '../../train/mapping_t5_complete_desc_unit_name'
def select(fold):
# import test data
data_path = f"../../train/mapping_with_unit/mapping_prediction/exports/result_group_{fold}.csv"
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
@ -91,3 +92,5 @@ with open("output.txt", "w") as f:
for fold in [1,2,3,4,5]:
select(fold)
# %%

View File

@ -4,6 +4,12 @@ from typing import List
from tqdm import tqdm
from utils import Retriever, cosine_similarity_chunked
# global parameters
THRESHOLD = 0.95
BATCH_SIZE = 512
#
class Selector():
input_df: pd.DataFrame
reference_df: pd.DataFrame
@ -22,10 +28,10 @@ class Selector():
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
# name = f"<NAME>{row['tag_name']}<NAME>"
name = f"<NAME>{row['tag_name']}<NAME>"
desc = f"<DESC>{row['tag_description']}<DESC>"
# element = f"{name}{desc}"
element = f"{desc}"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = f"{name}{desc}{unit}"
input_list.append(element)
return input_list
@ -58,13 +64,13 @@ class Selector():
train_data = list(generate_input_list(self.reference_df))
# Define the directory and the pattern
retriever_train = Retriever(train_data, checkpoint_path)
retriever_train.make_mean_embedding(batch_size=64)
retriever_train.make_mean_embedding(batch_size=BATCH_SIZE)
train_embed = retriever_train.embeddings
# take the inputs for df_sub
test_data = list(generate_input_list(self.input_df))
retriever_test = Retriever(test_data, checkpoint_path)
retriever_test.make_mean_embedding(batch_size=64)
retriever_test.make_mean_embedding(batch_size=BATCH_SIZE)
test_embed = retriever_test.embeddings
@ -75,7 +81,6 @@ class Selector():
tn_accumulate = 0
fp_accumulate = 0
fn_accumulate = 0
THRESHOLD = 0.9
for ship_idx in self.ships_list:
print(ship_idx)
# we select a ship and select only data exhibiting MDM pattern in the predictions
@ -119,6 +124,7 @@ class Selector():
all_idx_list.append(max_idx)
similarity_score.append(max_score)
# implement thresholding
print(max_score)
if max_score > THRESHOLD:
selected_idx_list.append(max_idx)

View File

@ -0,0 +1,87 @@
import torch
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
import torch.nn.functional as F
BATCH_SIZE = 128
class Retriever:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_mean_embedding(self, batch_size=BATCH_SIZE):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
embeddings = encoder_outputs.last_hidden_state
# Compute the mean pooling of the token embeddings
# mean_embedding = embeddings.mean(dim=1)
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
all_embeddings.append(mean_embedding)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)
batch2_size = batch2.size(0)
batch2.to(device)
# Prepare an empty tensor to store results
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
# Process batch1 in chunks
for i in range(0, batch1_size, chunk_size):
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
batch1_chunk.to(device)
# Expand batch1 chunk and entire batch2 for comparison
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
batch2_norms = batch2.norm(dim=1, keepdim=True)
# Compute cosine similarity for the chunk and store it in the final tensor
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
# Compute cosine similarity by matrix multiplication and normalizing
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
# Store the results in the appropriate part of the final tensor
cos_sim[i:i + chunk_size] = sim_chunk
return cos_sim

View File

@ -1 +1,3 @@
__pycache__
exports
output.txt

View File

@ -1,31 +1,31 @@
Fold: 1
Best threshold: 0.9775
Accuracy: 0.92512
F1 Score: 0.76313
Precision: 0.78069
Recall: 0.74633
Best threshold: 0.9
Accuracy: 0.89804
F1 Score: 0.74986
Precision: 0.62127
Recall: 0.94558
Fold: 2
Best threshold: 0.9775
Accuracy: 0.92054
F1 Score: 0.81117
Precision: 0.77150
Recall: 0.85514
Best threshold: 0.9
Accuracy: 0.86719
F1 Score: 0.73213
Precision: 0.61272
Recall: 0.90935
Fold: 3
Best threshold: 0.985
Accuracy: 0.93201
F1 Score: 0.83578
Precision: 0.81657
Recall: 0.85592
Best threshold: 0.9
Accuracy: 0.86941
F1 Score: 0.74849
Precision: 0.61280
Recall: 0.96135
Fold: 4
Best threshold: 0.9924999999999999
Accuracy: 0.95334
F1 Score: 0.82722
Precision: 0.83341
Recall: 0.82112
Best threshold: 0.9
Accuracy: 0.86325
F1 Score: 0.65826
Precision: 0.49865
Recall: 0.96813
Fold: 5
Best threshold: 0.9924999999999999
Accuracy: 0.92968
F1 Score: 0.77680
Precision: 0.83395
Recall: 0.72698
Best threshold: 0.9
Accuracy: 0.84147
F1 Score: 0.66416
Precision: 0.51612
Recall: 0.93129

View File

@ -110,27 +110,41 @@ def run_similarity_classifier(fold):
sim_list.append(top_sim_value)
# analysis 1: using threshold to perform find-back prediction success
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
best_threshold = 0
best_f1 = 0
for threshold in threshold_values:
predict_list = [ elem > threshold for elem in sim_list ]
# threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
# best_threshold = 0
# best_f1 = 0
# for threshold in threshold_values:
# predict_list = [ elem > threshold for elem in sim_list ]
y_true = test_df['MDM'].to_list()
y_pred = predict_list
# y_true = test_df['MDM'].to_list()
# y_pred = predict_list
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# # Compute metrics
# accuracy = accuracy_score(y_true, y_pred)
# f1 = f1_score(y_true, y_pred)
# precision = precision_score(y_true, y_pred)
# recall = recall_score(y_true, y_pred)
if f1 > best_f1:
best_threshold = threshold
best_f1 = f1
# if f1 > best_f1:
# best_threshold = threshold
# best_f1 = f1
# just manually set best_threshold
best_threshold = 0.90
# compute metrics again with best threshold
predict_list = [ elem > best_threshold for elem in sim_list ]
# save
pred_labels = np.array(predict_list, dtype=bool)
# append the mdm prediction to the test_df for analysis later
df_out = pd.DataFrame({
'p_mdm': pred_labels,
})
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
y_true = test_df['MDM'].to_list()
y_pred = predict_list
# Compute metrics

View File

@ -1,31 +1,31 @@
********************************************************************************
Fold: 1
Accuracy: 0.68859
F1 Score: 0.62592
Precision: 0.60775
Recall: 0.68859
Accuracy: 0.77142
F1 Score: 0.70728
Precision: 0.67509
Recall: 0.77142
********************************************************************************
Fold: 2
Accuracy: 0.72150
F1 Score: 0.65739
Precision: 0.63652
Recall: 0.72150
Accuracy: 0.74065
F1 Score: 0.68315
Precision: 0.66680
Recall: 0.74065
********************************************************************************
Fold: 3
Accuracy: 0.72038
F1 Score: 0.65781
Precision: 0.63249
Recall: 0.72038
Accuracy: 0.74849
F1 Score: 0.68717
Precision: 0.65975
Recall: 0.74849
********************************************************************************
Fold: 4
Accuracy: 0.74167
F1 Score: 0.68167
Precision: 0.65489
Recall: 0.74167
Accuracy: 0.71836
F1 Score: 0.65179
Precision: 0.63155
Recall: 0.71836
********************************************************************************
Fold: 5
Accuracy: 0.67705
F1 Score: 0.61273
Precision: 0.59472
Recall: 0.67705
Accuracy: 0.71461
F1 Score: 0.65512
Precision: 0.63375
Recall: 0.71461

View File

@ -1,12 +1,12 @@
#!/bin/bash
# cd classification_bert_complete_desc
# micromamba run -n hug accelerate launch train.py
# cd ..
#
# cd classification_bert_complete_desc_unit
# micromamba run -n hug accelerate launch train.py
# cd ..
cd classification_bert_complete_desc
micromamba run -n hug accelerate launch train.py
cd ..
cd classification_bert_complete_desc_unit
micromamba run -n hug accelerate launch train.py
cd ..
cd classification_bert_complete_desc_unit_name
micromamba run -n hug accelerate launch train.py
@ -22,4 +22,4 @@ cd ..
#
# cd mapping_t5_complete_name_desc_unit
# micromamba run -n hug accelerate launch train.py
# cd ..
# cd ..