feat: end-to-end code needed for deployment that includes preprocess,

mapping, post-process (de-duplication)
This commit is contained in:
Richard Wong 2024-12-02 14:57:03 +09:00
parent 737c86bc2e
commit 446ed1429c
8 changed files with 1026 additions and 3 deletions

5
end_to_end/.README.md Normal file
View File

@ -0,0 +1,5 @@
# End to End deployment code
This code takes in an input dataframe (assuming that the server code already
processed json to python dataframe), and applies our mapping + threshold +
de_duplicate code.

4
end_to_end/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
models
raw_data.csv
train_all.csv
__pycache__

415
end_to_end/deduplication.py Normal file
View File

@ -0,0 +1,415 @@
# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from tqdm import tqdm
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
)
##################
# global parameters
##################
class BertEmbedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# get last layer
embeddings = encoder_outputs.hidden_states[-1]
# get cls token embedding
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
all_embeddings.append(cls_embeddings)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
class T5Embedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
embeddings = encoder_outputs.last_hidden_state
# Compute the mean pooling of the token embeddings
# mean_embedding = embeddings.mean(dim=1)
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
all_embeddings.append(mean_embedding)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)
batch2_size = batch2.size(0)
batch2.to(device)
# Prepare an empty tensor to store results
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
# Process batch1 in chunks
for i in range(0, batch1_size, chunk_size):
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
batch1_chunk.to(device)
# Expand batch1 chunk and entire batch2 for comparison
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
batch2_norms = batch2.norm(dim=1, keepdim=True)
# Compute cosine similarity for the chunk and store it in the final tensor
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
# Compute cosine similarity by matrix multiplication and normalizing
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
# Store the results in the appropriate part of the final tensor
cos_sim[i:i + chunk_size] = sim_chunk
return cos_sim
###################
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
batch_size: int
def __init__(self, input_df, batch_size):
self.input_df = input_df
self.batch_size = batch_size
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
# name = f"<NAME>{row['tag_name']}<NAME>"
element = f"{desc}{unit}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
# embedder = T5Embedder(train_data, checkpoint_path)
embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=self.batch_size)
return embedder.embeddings
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list
# we then map the local idx to the ship-level idx
def selection(cos_sim_matrix, source_mask, target_mask):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
# returns a potential 2d matrix of which columns have the highest values
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# this partial sorts and ensures we care only top_k are correctly sorted
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
# convert boolean to indices
condition_indices = np.where(source_mask)[0]
max_idx = condition_indices[max_idx]
return max_idx, max_score
####################
# global level
# obtain the full mdm_list
#####################
# fold level
def run_deduplication(
test_df,
train_df,
batch_size=1024,
threshold=0.9,
diagnostic=False
):
# TODO: replace this with a list of values to import
# too wasteful to just import everything
data_path = '../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
# set the fold
# import test data
df = test_df
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = "train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
# generate your embeddings
checkpoint_path = 'models/bert_model'
# we can generate the train embeddings once and re-use for every ship
print('generate train embeddings')
train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# generate new embeddings for each ship
print('generate test embeddings')
test_embedder = Embedder(input_df=df, batch_size=batch_size)
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in tqdm(ships_list):
# ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
# map_local_index_to_global_index = ship_df.index.to_numpy()
# we want to subset the ship and only p_mdm values
ship_mask = df['ships_idx'] == ship_idx
map_local_index_to_global_index = np.where(ship_mask)[0]
ship_df = df[ship_mask].reset_index(drop=True)
# subset the test embeds
test_embeds = global_test_embeds[map_local_index_to_global_index]
# generate the cosine sim matrix for the ship level
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list to map answers back to the global answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1A: ensure that the predicted mapping labels are valid
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
pattern_match_mask = pattern_match_mask.astype(bool)
# anything not in the pattern_match_mask are hallucinations
# this has the same effect as setting any wrong generations as non-mdm
ship_answer_list[~pattern_match_mask] = False
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
# p_mdm_mask = ship_df['p_mdm']
# # assign false to any non p_mdm entries
# ship_answer_list[~p_mdm_mask] = False
# # modify pattern_match_mask to remove any non p_mdm values
# pattern_match_mask = pattern_match_mask & p_mdm_mask
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# create local copy of answer_list
ship_answer_list = answer_list.copy()
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
# selected_idx_list = sample_df.index.to_numpy()
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
# basic assumption check
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates_mask = ship_df['p_mapping'] == select_class
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = train_df['mapping'] == select_class
if sum(train_candidates_mask) == 0:
# it can be the case that the mdm-valid mapping class is not found in training data
# print("not found in training data", select_class)
ship_answer_list[selected_idx_list] = False
return ship_answer_list
# perform selection
# max_idx is the id
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# set the duplicate entries to False
ship_answer_list[selected_idx_list] = False
# then only set the one unique chosen value as True
if max_score > threshold:
ship_answer_list[max_idx] = True
return ship_answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
# this resulted in big improvement
if (sum(ship_df['p_mapping'] == select_class)) > 0:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
ship_local_indices = np.where(ship_answer_list)[0]
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
global_answer[ship_global_indices] = True
# we set all unselected values to None
df.loc[~global_answer, 'p_thing'] = None
df.loc[~global_answer, 'p_property'] = None
if diagnostic:
print(80 * '*')
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# print the results
print(f'accuracy: {accuracy:.5f}')
print(f'f1 score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
return df

169
end_to_end/mapper.py Normal file
View File

@ -0,0 +1,169 @@
import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Mapper():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def generate(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
pred_generations = []
pred_labels = []
self.model.cuda()
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
# disable if running on gpu's without tensor cores
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list

77
end_to_end/preprocess.py Normal file
View File

@ -0,0 +1,77 @@
# %%
import re
from replacement_dict import desc_replacement_dict, unit_replacement_dict
class Abbreviator:
def __init__(self, df):
self.df = df
def _count_abbreviation_occurrences(self, tag_descriptions, abbreviation):
"""Count the number of occurrences of the abbreviation in the list of machine descriptions."""
pattern = re.compile(abbreviation)
count = sum(len(pattern.findall(description)) for description in tag_descriptions)
return count
def _replace_abbreviations(self, tag_descriptions, abbreviations):
"""Replace the abbreviations according to the key-pair value provided."""
replaced_descriptions = []
for description in tag_descriptions:
for abbreviation, replacement in abbreviations.items():
description = re.sub(abbreviation, replacement, description)
replaced_descriptions.append(description)
return replaced_descriptions
def _cleanup_spaces(self, tag_descriptions):
# Replace all whitespace with a single space
replaced_descriptions = []
for description in tag_descriptions:
description_clean = re.sub(r'\s+', ' ', description)
replaced_descriptions.append(description_clean)
return replaced_descriptions
# remove all dots
def _cleanup_dots(self, tag_descriptions):
replaced_descriptions = []
for description in tag_descriptions:
description_clean = re.sub(r'\.', '', description)
replaced_descriptions.append(description_clean)
return replaced_descriptions
def run(self):
df = self.df
# %%
# Replace abbreviations
print("running substitution for descriptions")
# normalize to uppercase
# strip leading and trailing whitespace
df['tag_description'] = df['tag_description'].str.strip()
df['tag_description'] = df['tag_description'].str.upper()
# Replace whitespace-only entries with "NOVALUE"
# note that "N/A" can be read as nan
# replace whitespace only values as NOVALUE
df['tag_description']= df['tag_description'].fillna("NOVALUE")
df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
# perform actual substitution
tag_descriptions = df['tag_description']
replaced_descriptions = self._replace_abbreviations(tag_descriptions, desc_replacement_dict)
replaced_descriptions = self._cleanup_spaces(replaced_descriptions)
replaced_descriptions = self._cleanup_dots(replaced_descriptions)
df["tag_description"] = replaced_descriptions
# print("Descriptions after replacement:", replaced_descriptions)
# %%
print("running substitutions for units")
df['unit'] = df['unit'].fillna("NOVALUE")
df['unit'] = df['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
unit_list = df['unit']
new_unit = self._replace_abbreviations(unit_list, unit_replacement_dict)
new_unit = self._cleanup_spaces(new_unit)
df['unit'] = new_unit
return df

View File

@ -0,0 +1,291 @@
# substitution mapping for descriptions
# Abbreviations and their replacements
desc_replacement_dict = {
r'\bLIST\b': 'LIST',
# exhaust gas
r'\bE\. GAS\b': 'EXHAUST GAS',
r'\bEXH\.\b': 'EXHAUST',
r'\bEXH\b': 'EXHAUST',
r'\bEXHAUST\.\b': 'EXHAUST',
r'\bEXHAUST\b': 'EXHAUST',
r'\bBLR\.EXH\.\b': 'BOILER EXHAUST',
# temperature
r'\bTEMP\.\b': 'TEMPERATURE',
r'\bTEMP\b': 'TEMPERATURE',
r'\bTEMPERATURE\.\b': 'TEMPERATURE',
r'\bTEMPERATURE\b': 'TEMPERATURE',
# cylinder
r'\bCYL(\d+)\b': r'CYLINDER\1',
r'\bCYL\.(\d+)\b': r'CYLINDER\1',
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
r'\bCYL\.\b': 'CYLINDER',
r'\bCYL\b': 'CYLINDER',
# cooling
r'\bCOOL\.\b': 'COOLING',
r'\bCOOLING\b': 'COOLING',
r'\bCOOLER\b': 'COOLER',
r'\bCW\b': 'COOLING WATER',
r'\bC\.W\b': 'COOLING WATER',
r'\bJ\.C\.F\.W\b': 'JACKET COOLING FEED WATER',
r'\bJ\.C F\.W\b': 'JACKET COOLING FEED WATER',
r'\bJACKET C\.F\.W\b': 'JACKET COOLING FEED WATER',
r'\bCOOL\. F\.W\b': 'COOLING FEED WATER',
r'\bC\.F\.W\b': 'COOLING FEED WATER',
# sea water
r'\bC\.S\.W\b': 'COOLING SEA WATER',
r'\bCSW\b': 'COOLING SEA WATER',
r'\bC.S.W\b': 'COOLING SEA WATER',
# water
r'\bFEED W\.\b': 'FEED WATER',
r'\bFEED W\b': 'FEED WATER',
r'\bF\.W\b': 'FEED WATER',
r'\bF\.W\.\b': 'FEED WATER',
r'\bFW\b': 'FEED WATER',
# r'\bWATER\b': 'WATER',
r'\bSCAV\.\b': 'SCAVENGE',
r'\bSCAV\b': 'SCAVENGE',
r'\bINL\.\b': 'INLET',
r'\bINLET\b': 'INLET',
r'\bOUT\.\b': 'OUTLET',
r'\bOUTL\.\b': 'OUTLET',
r'\bOUTLET\b': 'OUTLET',
# tank
r'\bSTOR\.TK\b': 'STORAGE TANK',
r'\bSTOR\. TK\b': 'STORAGE TANK',
r'\bSERV\. TK\b': 'SERVICE TANK',
r'\bSETT\. TK\b': 'SETTLING TANK',
r'\bBK\b': 'BUNKER',
r'\bTK\b': 'TANK',
# PRESSURE
r'\bPRESS\b': 'PRESSURE',
r'\bPRESS\.\b': 'PRESSURE',
r'\bPRESSURE\b': 'PRESSURE',
r'PRS\b': 'PRESSURE', # this is a special replacement - it is safe to replace PRS w/o checks
# ENGINE
r'\bENG\.\b': 'ENGINE',
r'\bENG\b': 'ENGINE',
r'\bENGINE\b': 'ENGINE',
r'\bENGINE SPEED\b': 'ENGINE SPEED',
r'\bENGINE RUNNING\b': 'ENGINE RUNNING',
r'\bENGINE RPM PICKUP\b': 'ENGINE RPM PICKUP',
r'\bENGINE ROOM\b': 'ENGINE ROOM',
r'\bE/R\b': 'ENGINE ROOM',
# MAIN ENGINE
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E NO(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bME NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
r'\bM/E\b': 'MAIN_ENGINE',
r'\bM/E(.)\b': r'MAIN_ENGINE \1', # M/E(S/P)
r'\bME(.)\b': r'MAIN_ENGINE \1', # ME(S/P)
r'\bM_E\b': 'MAIN_ENGINE',
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
# ENGINE variants
r'\bM_E_RPM\b': 'MAIN ENGINE RPM',
r'\bM/E_M\.G\.O\.\b': 'MAIN ENGINE MARINE GAS OIL',
r'\bM/E_H\.F\.O\.\b': 'MAIN ENGINE HEAVY FUEL OIL',
# GENERATOR ENGINE
r'\bGEN(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bGE(\d+)\b': r'NO\1 GENERATOR_ENGINE',
# ensure that we substitute only for terms where following GE is num or special
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
r'\bG/E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bG/E\b': r'GENERATOR_ENGINE',
r'\bG_E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bG_E\b': 'GENERATOR_ENGINE',
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
r'\bG/E_M\.G\.O\b': 'GENERATOR_ENGINE MARINE GAS OIL',
# DG
r'\bDG(\d+)\b': r'NO\1 GENERATOR_ENGINE',
r'\bDG\b': 'GENERATOR_ENGINE',
r'\bD/G\b': 'GENERATOR_ENGINE',
r'\bDG(\d+)\((.)\)\b': r'NO\1\2 GENERATOR_ENGINE', # handle DG2(A)
r'\bDG(\d+[A-Za-z])\b': r'NO\1 GENERATOR_ENGINE', # handle DG2A
# DG variants
r'\bDG_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
r'\bDG_LOAD\b': 'GENERATOR_ENGINE LOAD',
r'\bDG_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
r'\bDG_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
r'\bDG_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
r'\bD/G_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
r'\bD/G_LOAD\b': 'GENERATOR_ENGINE LOAD',
r'\bD/G_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
r'\bD/G_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
r'\bD/G_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
# MGE
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
# generator engine and mgo
r'\bG/E_M\.G\.O\.\b': r'GENERATOR_ENGINE MARINE GAS OIL',
r'\bG/E_H\.F\.O\.\b': r'GENERATOR_ENGINE HEAVY FUEL OIL',
# ultra low sulfur fuel oil
r'\bU\.L\.S\.F\.O\b': 'ULTRA LOW SULFUR FUEL OIL',
r'\bULSFO\b': 'ULTRA LOW SULFUR FUEL OIL',
# marine gas oil
r'\bM\.G\.O\b': 'MARINE GAS OIL',
r'\bMGO\b': 'MARINE GAS OIL',
r'\bMDO\b': 'MARINE DIESEL OIL',
# light fuel oil
r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
r'\bLFO\b': 'LIGHT FUEL OIL',
# heavy fuel oil
r'\bHFO\b': 'HEAVY FUEL OIL',
r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
# piston cooling oil
r'\bPCO\b': 'PISTON COOLING OIL',
r'\bP\.C\.O\.\b': 'PISTON COOLING OIL',
r'\bP\.C\.O\b': 'PISTON COOLING OIL',
r'PISTION C.O': 'PISTON COOLING OIL',
# diesel oil
r'\bD.O\b': 'DIESEL OIL',
# for remaining fuel oil that couldn't be substituted
r'\bF\.O\b': 'FUEL OIL',
r'\bFO\b': 'FUEL OIL',
# lubricant
r'\bLUB\.\b': 'LUBRICANT',
r'\bLUBE\b': 'LUBRICANT',
r'\bLUBR\.\b': 'LUBRICANT',
r'\bLUBRICATING\.\b': 'LUBRICANT',
r'\bLUBRICATION\.\b': 'LUBRICANT',
# lubricating oil
r'\bL\.O\b': 'LUBRICATING OIL',
r'\bLO\b': 'LUBRICATING OIL',
# lubricating oil pressure
r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
# temperature
r'\bL\.T\b': 'LOW TEMPERATURE',
r'\bLT\b': 'LOW TEMPERATURE',
r'\bH\.T\b': 'HIGH TEMPERATURE',
r'\bHT\b': 'HIGH TEMPERATURE',
# BOILER
# auxiliary boiler
# replace these first before replacing AUXILIARY only
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
r'\bAUX\. BOILER\b': 'AUXILIARY BOILER',
r'\bAUX BLR\b': 'AUXILIARY BOILER',
r'\bAUX\.\b': 'AUXILIARY',
r'\bAUX\b': 'AUXILIARY',
# composite boiler
r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP\b': 'COMPOSITE',
r'\bCMPS\b': 'COMPOSITE',
# any other boiler
r'\bBLR\.\b': 'BOILER',
r'\bBLR\b': 'BOILER',
r'\bBOILER W.CIRC.P/P\b': 'BOILER WATER CIRC P/P',
# windind
r'\bWIND\.\b': 'WINDING',
r'\bWINDING\b': 'WINDING',
# VOLTAGE/FREQ/CURRENT
r'\bVLOT\.': 'VOLTAGE', # correct spelling
r'\bVOLT\.': 'VOLTAGE',
r'\bVOLTAGE\b': 'VOLTAGE',
r'\bFREQ\.': 'FREQUENCY',
r'\bFREQUENCY\b': 'FREQUENCY',
r'\bCURR\.': 'CURRENT',
r'\bCURRENT\b': 'CURRENT',
# TURBOCHARGER
r'\bTCA\b': 'TURBOCHARGER',
r'\bTCB\b': 'TURBOCHARGER',
r'\bT/C\b': 'TURBOCHARGER',
r'\bT_C\b': 'TURBOCHARGER',
r'\bT/C_RPM\b': 'TURBOCHARGER RPM',
r'\bTC(\d+)\b': r'TURBOCHARGER\1',
r'\bT/C(\d+)\b': r'TURBOCHARGER\1',
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
r'\bTURBOCHAGER\b': 'TURBOCHARGER',
r'\bTURBOCHARGER\b': 'TURBOCHARGER',
r'\bTURBOCHG\b': 'TURBOCHARGER',
# misc spelling errors
r'\bOPERATOIN\b': 'OPERATION',
# wrongly attached terms
r'\bBOILERMGO\b': 'BOILER MGO',
# additional standardizing replacement
# replace # followed by a number with NO
r'#(?=\d)\b': 'NO',
r'\bNO\.(?=\d)\b': 'NO',
r'\bNO\.\.(?=\d)\b': 'NO',
# others:
# generator
r'\bGEN\.\b': 'GENERATOR',
# others
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
r'\bFLTR\b': 'FILTER',
r'\bCLR\b': 'CLEAR',
}
# substitution mapping for units
# Abbreviations and their replacements
unit_replacement_dict = {
r'\b%\b': 'PERCENT',
r'\b-\b': '',
r'\b- \b': '',
# ensure no character after A
r'\bA(?!\w|/)': 'CURRENT',
r'\bAmp(?!\w|/)': 'CURRENT',
r'\bHz\b': 'HERTZ',
r'\bKG/CM2\b': 'PRESSURE',
r'\bKG/H\b': 'KILOGRAM PER HOUR',
r'\bKNm\b': 'RPM',
r'\bKW\b': 'POWER',
r'\bKg(?!\w|/)': 'MASS',
r'\bKw\b': 'POWER',
r'\bL(?!\w|/)': 'VOLUME',
r'\bMT/h\b': 'METRIC TONNES PER HOUR',
r'\bMpa\b': 'PRESSURE',
r'\bPF\b': 'POWER FACTOR',
r'\bRPM\b': 'RPM',
r'\bV(?!\w|/)': 'VOLTAGE',
r'\bbar(?!\w|/)': 'PRESSURE',
r'\bbarA\b': 'SCAVENGE PRESSURE',
r'\bcST\b': 'VISCOSITY',
r'\bcSt\b': 'VISCOSITY',
r'\bcst\b': 'VISCOSITY',
r'\bdeg(?!\w|/|\.)': 'DEGREE',
r'\bdeg.C\b': 'TEMPERATURE',
r'\bdegC\b': 'TEMPERATURE',
r'\bdegree\b': 'DEGREE',
r'\bdegreeC\b': 'TEMPERATURE',
r'\bhPa\b': 'PRESSURE',
r'\bhours\b': 'HOURS',
r'\bkN\b': 'THRUST',
r'\bkNm\b': 'TORQUE',
r'\bkW\b': 'POWER',
# ensure that kg is not followed by anything
r'\bkg(?!\w|/)': 'FLOW', # somehow in the data its flow
r'\bkg/P\b': 'MASS FLOW',
r'\bkg/cm2\b': 'PRESSURE',
r'\bkg/cm²\b': 'PRESSURE',
r'\bkg/h\b': 'MASS FLOW',
r'\bkg/hr\b': 'MASS FLOW',
r'\bkg/pulse\b': '',
r'\bkgf/cm2\b': 'PRESSURE',
r'\bkgf/cm²\b': 'PRESSURE',
r'\bkgf/㎠\b': 'PRESSURE',
r'\bknots\b': 'SPEED',
r'\bkw\b': 'POWER',
r'\bl/Hr\b': 'VOLUME FLOW',
r'\bl/h\b': 'VOLUME FLOW',
r'\bl_Hr\b': 'VOLUME FLOW',
r'\bl_hr\b': 'VOLUME FLOW',
r'\bM\b': 'DRAFT', # for wind draft
r'm': 'm', # wind draft and trim - not useful
r'\bm/s\b': 'SPEED',
r'\bm3\b': 'VOLUME',
r'\bmH2O\b': 'DRAFT',
r'\bmWC\b': 'DRAFT',
r'\bmbar\b': 'PRESSURE',
r'\bmg\b': 'ACCELERATION',
r'\bmin-¹\b': '', # data too varied
r'\bmm\b': '', # data too varied
r'\bmmH2O\b': 'WATER DRUM LEVEL',
r'\brev\b': 'RPM',
r'\brpm\b': 'RPM',
r'\bx1000min-¹\b': '',
r'\b°C\b': 'TEMPERATURE',
r'\bºC\b': 'TEMPERATURE',
r'\b℃\b': 'TEMPERATURE'
}

64
end_to_end/run.py Normal file
View File

@ -0,0 +1,64 @@
# %%
import pandas as pd
import os
import glob
from mapper import Mapper
from preprocess import Abbreviator
from deduplication import run_deduplication
# global config
BATCH_SIZE = 1024
SHIPS_LIST = [1000,1001,1003]
# %%
# START: we import the raw data csv and extract only a few ships from it to simulate incoming json
data_path = 'raw_data.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# subset ships only to that found in SHIPS_LIST
df = full_df[full_df['ships_idx'].isin(SHIPS_LIST)].reset_index(drop=True)
num_rows = 2000
df = df[:num_rows]
print(len(df))
# pre-process data
abbreviator = Abbreviator(df)
df = abbreviator.run()
# %%
##########################################
# run mapping
# checkpoint
# Use glob to find matching paths
checkpoint_path = 'models/mapping_model'
mapper = Mapper(checkpoint_path)
mapper.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
thing_prediction_list, property_prediction_list = mapper.generate()
# add labels too
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
# Convert the list to a Pandas DataFrame
df_out = pd.DataFrame({
'p_thing': thing_prediction_list,
'p_property': property_prediction_list
})
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
df = pd.concat([df, df_out], axis=1)
# %%
####################################
# run de_duplication with thresholding
data_path = "train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
df = run_deduplication(
test_df=df,
train_df=train_df,
batch_size=BATCH_SIZE,
threshold=0.9,
diagnostic=True)
# %%

View File

@ -3,9 +3,7 @@ from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
DataCollatorWithPadding,
)
import torch.nn.functional as F
@ -24,7 +22,7 @@ class BertEmbedder:
self.model = model.eval()
def make_embedding(self, batch_size=64):
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs