Feat: implement hybrid fine-tuning of encoder and decoder networks

separately
This commit is contained in:
Richard Wong 2024-12-10 23:40:10 +09:00
parent 446ed1429c
commit b01ca4f395
14 changed files with 924 additions and 26 deletions

1
.gitignore vendored
View File

@ -0,0 +1 @@
*.zip

View File

@ -1,4 +1,5 @@
models
raw_data.csv
train_all.csv
__pycache__
__pycache__
*.pt

View File

@ -31,8 +31,9 @@ class BertEmbedder:
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
self.model = model.to(self.device)
self.model = self.model.eval()
# self.model = torch.compile(self.model)
def make_embedding(self, batch_size=128):
@ -75,10 +76,11 @@ class T5Embedder:
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
self.model = torch.compile(self.model)
@ -251,10 +253,26 @@ def run_deduplication(
# generate your embeddings
checkpoint_path = 'models/bert_model'
# cache embeddings
file_path = "train_embeds.pt"
if os.path.exists(file_path):
# Load the tensor if the file exists
tensor = torch.load(file_path, weights_only=True)
print("Loaded tensor")
else:
# Create and save the tensor if the file doesn't exist
print('generate train embeddings')
train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
tensor = train_embedder.make_embedding(checkpoint_path)
torch.save(tensor, file_path, weights_only=True)
print("Tensor saved to file.")
train_embeds = tensor
# if we can, we can cache the train embeddings and load directly
# we can generate the train embeddings once and re-use for every ship
print('generate train embeddings')
train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# generate new embeddings for each ship
print('generate test embeddings')

View File

@ -3,11 +3,14 @@ from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
StoppingCriteria,
StoppingCriteriaList,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
from torch.nn.utils.rnn import pad_sequence
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
@ -35,9 +38,11 @@ class Mapper():
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
self.model.cuda()
# self.model = torch.compile(self.model)
@ -59,8 +64,8 @@ class Mapper():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
'input' : f"{desc}{unit}"
# 'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
@ -68,16 +73,16 @@ class Mapper():
def _preprocess_function(example):
input = example['input']
target = example['output']
# target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
# text_target=target,
# max_length=max_length,
padding=True,
truncation=True,
return_tensors="pt",
)
return model_inputs
@ -93,19 +98,55 @@ class Mapper():
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask'])
def _custom_collate_fn(batch):
# Extract data and targets separately if needed
inputs = [item['input_ids'] for item in batch]
attention_masks = [item['attention_mask'] for item in batch]
# Pad data to the same length
padded_inputs = pad_sequence(inputs, batch_first=True)
padded_attention_masks = pad_sequence(attention_masks, batch_first=True)
return {'input_ids': padded_inputs, 'attention_mask': padded_attention_masks}
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
self.dataloader = DataLoader(
datasets,
batch_size=batch_size,
collate_fn=_custom_collate_fn
)
def generate(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
MAX_GENERATE_LENGTH = 120
pred_generations = []
pred_labels = []
self.model.cuda()
# pred_labels = []
# self.model already assigned to device
# self.model.cuda()
# introduce early stopping so that it doesn't have to generate max length
class StopOnEndToken(StoppingCriteria):
def __init__(self, end_token_id):
self.end_token_id = end_token_id
def __call__(self, input_ids, scores, **kwargs):
# Check if the last token in any sequence is the end token
batch_stopped = input_ids[:, -1] == self.end_token_id
# only stop if all have reached end token
if batch_stopped.all():
return True # Stop generation for the entire batch
return False
# Define the end token ID (e.g., the ID for <eos>)
end_token_id = 32103 # property end token
# Use the stopping criteria
stopping_criteria = StoppingCriteriaList([StopOnEndToken(end_token_id)])
print("start generation")
for batch in tqdm(self.dataloader):
@ -113,7 +154,7 @@ class Mapper():
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# pred_labels.extend(batch['labels'])
# Move to GPU if available
@ -126,7 +167,11 @@ class Mapper():
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
max_length=MAX_GENERATE_LENGTH,
# eos_token_id=32103,
# early_stopping=True,
use_cache=True,
stopping_criteria=stopping_criteria)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))

View File

@ -7,8 +7,8 @@ from preprocess import Abbreviator
from deduplication import run_deduplication
# global config
BATCH_SIZE = 1024
SHIPS_LIST = [1000,1001,1003]
BATCH_SIZE = 512
SHIPS_LIST = [1000,1001,1003,1004]
# %%
# START: we import the raw data csv and extract only a few ships from it to simulate incoming json
@ -17,7 +17,8 @@ full_df = pd.read_csv(data_path, skipinitialspace=True)
# subset ships only to that found in SHIPS_LIST
df = full_df[full_df['ships_idx'].isin(SHIPS_LIST)].reset_index(drop=True)
num_rows = 2000
# test parameters
num_rows = len(df) - 1
df = df[:num_rows]
print(len(df))
@ -58,7 +59,7 @@ df = run_deduplication(
test_df=df,
train_df=train_df,
batch_size=BATCH_SIZE,
threshold=0.9,
threshold=0.85,
diagnostic=True)
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1 @@
__pycache__

View File

@ -0,0 +1,125 @@
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import (
T5PreTrainedModel,
T5Model
)
from transformers.modeling_outputs import (
SequenceClassifierOutput,
)
def mean_pooling(encoder_outputs, attention_mask):
"""
Perform mean pooling over encoder outputs, considering the attention mask.
"""
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
masked_hidden_states = hidden_states * mask # Zero out padding tokens
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
return sum_hidden_states / sum_mask # Mean pooling
class T5EncoderForSequenceClassification(T5PreTrainedModel):
def __init__(self, checkpoint, tokenizer, config, num_labels):
super().__init__(config)
self.num_labels = num_labels
self.config = config
# we force the loading of a pre-trained model here
self.t5 = T5Model.from_pretrained(checkpoint)
self.t5.resize_token_embeddings(len(tokenizer))
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# encoder_outputs = self.t5.encoder(
# input_ids,
# attention_mask=attention_mask,
# head_mask=head_mask,
# inputs_embeds=inputs_embeds,
# output_attentions=output_attentions,
# output_hidden_states=output_hidden_states,
# return_dict=return_dict,
# )
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
# last_hidden_state = encoder_outputs.last_hidden_state
# use mean of hidden state
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
# Use the hidden state of the first token as the sequence representation
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
# pooled_output = encoder_outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + encoder_outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)

View File

@ -0,0 +1,2 @@
__pycache__
exports/

View File

@ -0,0 +1,168 @@
import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Inference():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding="max_length",
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def generate(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
pred_generations = []
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list

View File

@ -0,0 +1,6 @@
Accuracy for fold 1: 0.9427354472314246
Accuracy for fold 2: 0.8859813084112149
Accuracy for fold 3: 0.9683734939759037
Accuracy for fold 4: 0.9762131303520457
Accuracy for fold 5: 0.907924874026569

View File

@ -0,0 +1,73 @@
import pandas as pd
import os
import glob
from inference import Inference
checkpoint_directory = '../'
BATCH_SIZE = 512
def infer_and_select(fold):
print(f"Inference for fold {fold}")
# import test data
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
##########################################
# run inference
# checkpoint
# Use glob to find matching paths
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
infer = Inference(checkpoint_path)
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
thing_prediction_list, property_prediction_list = infer.generate()
# add labels too
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
# Convert the list to a Pandas DataFrame
df_out = pd.DataFrame({
'p_thing': thing_prediction_list,
'p_property': property_prediction_list
})
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
df = pd.concat([df, df_out], axis=1)
# we can save the t5 generation output here
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
# here we want to evaluate mapping accuracy within the valid in mdm data only
in_mdm = df['MDM']
condition_correct_thing = df['p_thing'] == df['thing']
condition_correct_property = df['p_property'] == df['property']
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
# write output to file output.txt
with open("output.txt", "a") as f:
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
###########################################
# Execute for all folds
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
infer_and_select(fold)

View File

@ -0,0 +1,227 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
from safetensors.torch import load_file
from transformers import (
T5Config,
T5TokenizerFast,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainer,
EarlyStoppingCallback,
Seq2SeqTrainingArguments,
T5ForConditionalGeneration,
T5Model
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# outputs a list of dictionaries
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def create_split_dataset(fold):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
})
return combined_data
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}b'
split_datasets = create_split_dataset(fold)
# prepare tokenizer
model_checkpoint = "t5-small"
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
text_target=target,
max_length=max_length,
truncation=True,
padding="max_length"
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns=split_datasets["train"].column_names,
)
# https://github.com/huggingface/transformers/pull/28414
# model_checkpoint = "google/t5-efficient-tiny"
# device_map set to auto to force it to load contiguous weights
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
directory = os.path.join(".", f'checkpoint_fold_{fold}a')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
# t5_classify = T5Model.from_pretrained(prev_checkpoint)
# Load the checkpoint
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
checkpoint = load_file(checkpoint_path)
# Filter out weights related to the classification head
t5_weights = {key: value for key, value in checkpoint.items() if "classifier" not in key}
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
model.load_state_dict(state_dict=t5_weights, strict=False)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# Freeze the encoder
for param in model.encoder.parameters():
param.requires_grad = False
# Freeze the shared embedding layer
for param in model.shared.parameters():
param.requires_grad = False
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
metric = evaluate.load("sacrebleu")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds,
skip_special_tokens=False)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels,
skip_special_tokens=False)
# Remove <PAD> tokens from decoded predictions and labels
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
# Some simple post-processing
# decoded_preds = [pred.strip() for pred in decoded_preds]
# decoded_labels = [[label.strip()] for label in decoded_labels]
# print(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": result["score"]}
# Generation Config
# from transformers import GenerationConfig
gen_config = model.generation_config
gen_config.max_length = 128
# compile
# model = torch.compile(model, backend="inductor", dynamic=True)
# Trainer
args = Seq2SeqTrainingArguments(
f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
predict_with_generate=True,
bf16=True,
push_to_hub=False,
generation_config=gen_config,
remove_unused_columns=False,
)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)

View File

@ -0,0 +1,228 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
T5Config,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
mdm_list = sorted(list((set(full_df['pattern']))))
# # rather than use pattern, we use the real thing and property
# thing_property = full_df['thing'] + full_df['property']
# thing_property = thing_property.to_list()
# mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
# pattern = f"{row['thing'] + row['property']}"
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}a'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
# model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-cased'
model_checkpoint = "t5-small"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding="max_length"
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
# model = AutoModelForSequenceClassification.from_pretrained(
# model_checkpoint,
# num_labels=len(mdm_list),
# id2label=id2label,
# label2id=label2id)
model = T5EncoderForSequenceClassification(
checkpoint=model_checkpoint,
tokenizer=tokenizer,
config=T5Config.from_pretrained(model_checkpoint),
num_labels=len(mdm_list)
)
# important! after extending tokens vocab
# model.t5.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=128,
per_device_eval_batch_size=128,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%