diff --git a/end_to_end/.README.md b/end_to_end/.README.md new file mode 100644 index 0000000..d995ab2 --- /dev/null +++ b/end_to_end/.README.md @@ -0,0 +1,5 @@ +# End to End deployment code + +This code takes in an input dataframe (assuming that the server code already +processed json to python dataframe), and applies our mapping + threshold + +de_duplicate code. \ No newline at end of file diff --git a/end_to_end/.gitignore b/end_to_end/.gitignore new file mode 100644 index 0000000..a1bff18 --- /dev/null +++ b/end_to_end/.gitignore @@ -0,0 +1,4 @@ +models +raw_data.csv +train_all.csv +__pycache__ \ No newline at end of file diff --git a/end_to_end/deduplication.py b/end_to_end/deduplication.py new file mode 100644 index 0000000..b7fa37c --- /dev/null +++ b/end_to_end/deduplication.py @@ -0,0 +1,415 @@ + +# %% +import pandas as pd +import os +import glob +from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix +import numpy as np +from tqdm import tqdm + +import torch +from transformers import ( + AutoTokenizer, + AutoModelForSequenceClassification, + AutoModelForSeq2SeqLM, +) + +################## +# global parameters +################## + + + +class BertEmbedder: + def __init__(self, input_texts, model_checkpoint): + # we need to generate the embedding from list of input strings + self.embeddings = [] + self.inputs = input_texts + model_checkpoint = model_checkpoint + self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True) + + model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + # device = "cpu" + model.to(self.device) + self.model = model.eval() + + + def make_embedding(self, batch_size=128): + all_embeddings = self.embeddings + input_texts = self.inputs + + for i in range(0, len(input_texts), batch_size): + batch_texts = input_texts[i:i+batch_size] + # Tokenize the input text + inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120) + input_ids = inputs.input_ids.to(self.device) + attention_mask = inputs.attention_mask.to(self.device) + + + # Pass the input through the encoder and retrieve the embeddings + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + with torch.no_grad(): + encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True) + # get last layer + embeddings = encoder_outputs.hidden_states[-1] + # get cls token embedding + cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size) + all_embeddings.append(cls_embeddings) + + # remove the batch list and makes a single large tensor, dim=0 increases row-wise + all_embeddings = torch.cat(all_embeddings, dim=0) + + self.embeddings = all_embeddings + +class T5Embedder: + def __init__(self, input_texts, model_checkpoint): + # we need to generate the embedding from list of input strings + self.embeddings = [] + self.inputs = input_texts + model_checkpoint = model_checkpoint + self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True) + # define additional special tokens + additional_special_tokens = ["", "", "", "", "", "", "", "", ""] + # add the additional special tokens to the tokenizer + self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) + + model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) + self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") + # device = "cpu" + model.to(self.device) + self.model = model.eval() + + + + + def make_embedding(self, batch_size=128): + all_embeddings = self.embeddings + input_texts = self.inputs + + for i in range(0, len(input_texts), batch_size): + batch_texts = input_texts[i:i+batch_size] + # Tokenize the input text + inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128) + input_ids = inputs.input_ids.to(self.device) + attention_mask = inputs.attention_mask.to(self.device) + + + # Pass the input through the encoder and retrieve the embeddings + + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + with torch.no_grad(): + encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask) + embeddings = encoder_outputs.last_hidden_state + + # Compute the mean pooling of the token embeddings + # mean_embedding = embeddings.mean(dim=1) + mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True) + all_embeddings.append(mean_embedding) + + # remove the batch list and makes a single large tensor, dim=0 increases row-wise + all_embeddings = torch.cat(all_embeddings, dim=0) + + self.embeddings = all_embeddings + + +def cosine_similarity_chunked(batch1, batch2, chunk_size=1024): + device = 'cuda' + batch1_size = batch1.size(0) + batch2_size = batch2.size(0) + batch2.to(device) + + # Prepare an empty tensor to store results + cos_sim = torch.empty(batch1_size, batch2_size, device=device) + + # Process batch1 in chunks + for i in range(0, batch1_size, chunk_size): + batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1 + + batch1_chunk.to(device) + # Expand batch1 chunk and entire batch2 for comparison + # batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) + # batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + batch2_norms = batch2.norm(dim=1, keepdim=True) + + + # Compute cosine similarity for the chunk and store it in the final tensor + # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + + # Compute cosine similarity by matrix multiplication and normalizing + sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8) + + # Store the results in the appropriate part of the final tensor + cos_sim[i:i + chunk_size] = sim_chunk + + return cos_sim + + + + +################### +# helper functions +class Embedder(): + input_df: pd.DataFrame + fold: int + batch_size: int + + def __init__(self, input_df, batch_size): + self.input_df = input_df + self.batch_size = batch_size + + + def make_embedding(self, checkpoint_path): + + def generate_input_list(df): + input_list = [] + for _, row in df.iterrows(): + desc = f"{row['tag_description']}" + unit = f"{row['unit']}" + # name = f"{row['tag_name']}" + element = f"{desc}{unit}" + input_list.append(element) + return input_list + + # prepare reference embed + train_data = list(generate_input_list(self.input_df)) + # Define the directory and the pattern + # embedder = T5Embedder(train_data, checkpoint_path) + embedder = BertEmbedder(train_data, checkpoint_path) + embedder.make_embedding(batch_size=self.batch_size) + return embedder.embeddings + + + + +# the selection function takes in the full cos_sim_matrix then subsets the +# matrix according to the test_candidates_mask and train_candidates_mask that we +# give it +# it returns the most likely source candidate index and score among the source +# candidate list +# we then map the local idx to the ship-level idx +def selection(cos_sim_matrix, source_mask, target_mask): + # subset_matrix = cos_sim_matrix[condition_source] + # except we are subsetting 2D matrix (row, column) + subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)] + # we select top-k here + # Get the indices of the top-k maximum values along axis 1 + top_k = 1 + # returns a potential 2d matrix of which columns have the highest values + # top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values + # this partial sorts and ensures we care only top_k are correctly sorted + top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:] + + # Get the values of the top 5 maximum scores + top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1) + + # Calculate the average of the top-k scores along axis 1 + y_scores = np.mean(top_k_values, axis=1) + max_idx = np.argmax(y_scores) + max_score = y_scores[max_idx] + + # convert boolean to indices + condition_indices = np.where(source_mask)[0] + max_idx = condition_indices[max_idx] + + + return max_idx, max_score + + + +#################### +# global level +# obtain the full mdm_list + +##################### +# fold level + +def run_deduplication( + test_df, + train_df, + batch_size=1024, + threshold=0.9, + diagnostic=False + ): + + # TODO: replace this with a list of values to import + # too wasteful to just import everything + data_path = '../data_import/exports/data_mapping_mdm.csv' + full_df = pd.read_csv(data_path, skipinitialspace=True) + full_df['mapping'] = full_df['thing'] + ' ' + full_df['property'] + full_mdm_mapping_list = sorted(list((set(full_df['mapping'])))) + + # set the fold + # import test data + df = test_df + df['p_mapping'] = df['p_thing'] + " " + df['p_property'] + + # get target data + data_path = "train_all.csv" + train_df = pd.read_csv(data_path, skipinitialspace=True) + train_df['mapping'] = train_df['thing'] + " " + train_df['property'] + + # generate your embeddings + checkpoint_path = 'models/bert_model' + # we can generate the train embeddings once and re-use for every ship + print('generate train embeddings') + train_embedder = Embedder(input_df=train_df, batch_size=batch_size) + train_embeds = train_embedder.make_embedding(checkpoint_path) + + # generate new embeddings for each ship + print('generate test embeddings') + test_embedder = Embedder(input_df=df, batch_size=batch_size) + global_test_embeds = test_embedder.make_embedding(checkpoint_path) + + + # create global_answer array + # the purpose of this array is to track the classification state at the global + # level + global_answer = np.zeros(len(df), dtype=bool) + + ############################# + # ship level + # we have to split into per-ship analysis + ships_list = sorted(list(set(df['ships_idx']))) + + for ship_idx in tqdm(ships_list): + # ship_df = df[df['ships_idx'] == ship_idx] + # required to map local ship_answer array to global_answer array + # map_local_index_to_global_index = ship_df.index.to_numpy() + + # we want to subset the ship and only p_mdm values + ship_mask = df['ships_idx'] == ship_idx + map_local_index_to_global_index = np.where(ship_mask)[0] + ship_df = df[ship_mask].reset_index(drop=True) + + # subset the test embeds + test_embeds = global_test_embeds[map_local_index_to_global_index] + + # generate the cosine sim matrix for the ship level + cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy() + + ############################## + # selection level + # The general idea: + # step 1: keep only pattern generations that belong to mdm list + # -> this removes totally wrong datasets that mapped to totally wrong things + # step 2: loop through the mdm list and isolate data in both train and test that + # belong to the same pattern class + # -> this is more tricky, because we have non-mdm mapping to correct classes + # -> so we have to find which candidate is most similar to the training data + + # it is very tricky to keep track of classification across multiple stages so we + # will use a boolean answer list to map answers back to the global answer list + + # initialize the local answer list + ship_answer_list = np.ones(len(ship_df), dtype=bool) + + ########### + # STEP 1A: ensure that the predicted mapping labels are valid + pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy() + pattern_match_mask = pattern_match_mask.astype(bool) + # anything not in the pattern_match_mask are hallucinations + # this has the same effect as setting any wrong generations as non-mdm + ship_answer_list[~pattern_match_mask] = False + + # # STEP 1B: subset our de-duplication to use only predicted_mdm labels + # p_mdm_mask = ship_df['p_mdm'] + # # assign false to any non p_mdm entries + # ship_answer_list[~p_mdm_mask] = False + # # modify pattern_match_mask to remove any non p_mdm values + # pattern_match_mask = pattern_match_mask & p_mdm_mask + + ########### + # STEP 2 + # we now go through each class found in our generated set + + # we want to identify per-ship mdm classes + ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list())) + + # this function performs the selection given a class + # it takes in the cos_sim_matrix + # it returns the selection by mutating the answer_list + # it sets all relevant idxs to False initially, then sets the selected values to True + def selection_for_class(select_class, cos_sim_matrix, answer_list): + + # create local copy of answer_list + ship_answer_list = answer_list.copy() + # sample_df = ship_df[ship_df['p_mapping'] == select_class] + + + # we need to set all idx of chosen entries as False in answer_list -> assume wrong by default + # selected_idx_list = sample_df.index.to_numpy() + selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0] + + # basic assumption check + + # generate the masking arrays for both test and train embeddings + # we select a tuple from each group, and use that as a candidate for selection + test_candidates_mask = ship_df['p_mapping'] == select_class + # we make candidates to compare against in the data sharing the same class + train_candidates_mask = train_df['mapping'] == select_class + + if sum(train_candidates_mask) == 0: + # it can be the case that the mdm-valid mapping class is not found in training data + # print("not found in training data", select_class) + ship_answer_list[selected_idx_list] = False + return ship_answer_list + + # perform selection + # max_idx is the id + max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask) + + + # set the duplicate entries to False + ship_answer_list[selected_idx_list] = False + # then only set the one unique chosen value as True + if max_score > threshold: + ship_answer_list[max_idx] = True + + return ship_answer_list + + # we choose one mdm class + for select_class in ship_predicted_classes: + # this resulted in big improvement + if (sum(ship_df['p_mapping'] == select_class)) > 0: + ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list) + + # we want to write back to global_answer + # first we convert local indices to global indices + ship_local_indices = np.where(ship_answer_list)[0] + ship_global_indices = map_local_index_to_global_index[ship_local_indices] + global_answer[ship_global_indices] = True + + # we set all unselected values to None + df.loc[~global_answer, 'p_thing'] = None + df.loc[~global_answer, 'p_property'] = None + + + if diagnostic: + print(80 * '*') + + y_true = df['MDM'].to_list() + y_pred = global_answer + + tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() + print(f"tp: {tp}") + print(f"tn: {tn}") + print(f"fp: {fp}") + print(f"fn: {fn}") + + # compute metrics + accuracy = accuracy_score(y_true, y_pred) + f1 = f1_score(y_true, y_pred) + precision = precision_score(y_true, y_pred) + recall = recall_score(y_true, y_pred) + + # print the results + print(f'accuracy: {accuracy:.5f}') + print(f'f1 score: {f1:.5f}') + print(f'Precision: {precision:.5f}') + print(f'Recall: {recall:.5f}') + + + return df + + diff --git a/end_to_end/mapper.py b/end_to_end/mapper.py new file mode 100644 index 0000000..c9685fb --- /dev/null +++ b/end_to_end/mapper.py @@ -0,0 +1,169 @@ +import torch +from torch.utils.data import DataLoader +from transformers import ( + T5TokenizerFast, + AutoModelForSeq2SeqLM, +) +import os +from tqdm import tqdm +from datasets import Dataset +import numpy as np + +os.environ['TOKENIZERS_PARALLELISM'] = 'false' + + +class Mapper(): + tokenizer: T5TokenizerFast + model: torch.nn.Module + dataloader: DataLoader + + def __init__(self, checkpoint_path): + self._create_tokenizer() + self._load_model(checkpoint_path) + + + def _create_tokenizer(self): + # %% + # load tokenizer + self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True) + # Define additional special tokens + additional_special_tokens = ["", "", "", "", "", "", "SIG", "UNIT", "DATA_TYPE"] + # Add the additional special tokens to the tokenizer + self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) + + def _load_model(self, checkpoint_path: str): + # load model + # Define the directory and the pattern + model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path) + model = torch.compile(model) + # set model to eval + self.model = model.eval() + + + + + def prepare_dataloader(self, input_df, batch_size, max_length): + """ + *arguments* + - input_df: input dataframe containing fields 'tag_description', 'thing', 'property' + - batch_size: the batch size of dataloader output + - max_length: length of tokenizer output + """ + print("preparing dataloader") + # convert each dataframe row into a dictionary + # outputs a list of dictionaries + + def _process_df(df): + output_list = [] + for _, row in df.iterrows(): + desc = f"{row['tag_description']}" + unit = f"{row['unit']}" + element = { + 'input' : f"{desc}{unit}", + 'output': f"{row['thing']}{row['property']}", + } + output_list.append(element) + + return output_list + + def _preprocess_function(example): + input = example['input'] + target = example['output'] + # text_target sets the corresponding label to inputs + # there is no need to create a separate 'labels' + model_inputs = self.tokenizer( + input, + text_target=target, + max_length=max_length, + return_tensors="pt", + padding='max_length', + truncation=True, + ) + return model_inputs + + test_dataset = Dataset.from_list(_process_df(input_df)) + + + # map maps function to each "row" in the dataset + # aka the data in the immediate nesting + datasets = test_dataset.map( + _preprocess_function, + batched=True, + num_proc=1, + remove_columns=test_dataset.column_names, + ) + # datasets = _preprocess_function(test_dataset) + datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) + + # create dataloader + self.dataloader = DataLoader(datasets, batch_size=batch_size) + + + def generate(self): + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + MAX_GENERATE_LENGTH = 128 + + pred_generations = [] + pred_labels = [] + self.model.cuda() + + print("start generation") + for batch in tqdm(self.dataloader): + # Inference in batches + input_ids = batch['input_ids'] + attention_mask = batch['attention_mask'] + # save labels too + pred_labels.extend(batch['labels']) + + + # Move to GPU if available + input_ids = input_ids.to(device) + attention_mask = attention_mask.to(device) + + # Perform inference + # disable if running on gpu's without tensor cores + with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16): + with torch.no_grad(): + outputs = self.model.generate(input_ids, + attention_mask=attention_mask, + max_length=MAX_GENERATE_LENGTH) + + # Decode the output and print the results + pred_generations.extend(outputs.to("cpu")) + + + + # %% + # extract sequence and decode + def extract_seq(tokens, start_value, end_value): + if start_value not in tokens or end_value not in tokens: + return None # Or handle this case according to your requirements + start_id = np.where(tokens == start_value)[0][0] + end_id = np.where(tokens == end_value)[0][0] + + return tokens[start_id+1:end_id] + + + def process_tensor_output(tokens): + thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = , 32101 = + property_seq = extract_seq(tokens, 32102, 32103) # 32102 = , 32103 = + p_thing = None + p_property = None + if (thing_seq is not None): + p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False) + if (property_seq is not None): + p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False) + return p_thing, p_property + + # decode prediction labels + def decode_preds(tokens_list): + thing_prediction_list = [] + property_prediction_list = [] + for tokens in tokens_list: + p_thing, p_property = process_tensor_output(tokens) + thing_prediction_list.append(p_thing) + property_prediction_list.append(p_property) + return thing_prediction_list, property_prediction_list + + thing_prediction_list, property_prediction_list = decode_preds(pred_generations) + return thing_prediction_list, property_prediction_list diff --git a/end_to_end/preprocess.py b/end_to_end/preprocess.py new file mode 100644 index 0000000..a21f61a --- /dev/null +++ b/end_to_end/preprocess.py @@ -0,0 +1,77 @@ +# %% +import re +from replacement_dict import desc_replacement_dict, unit_replacement_dict + +class Abbreviator: + + def __init__(self, df): + self.df = df + + def _count_abbreviation_occurrences(self, tag_descriptions, abbreviation): + """Count the number of occurrences of the abbreviation in the list of machine descriptions.""" + pattern = re.compile(abbreviation) + count = sum(len(pattern.findall(description)) for description in tag_descriptions) + return count + + def _replace_abbreviations(self, tag_descriptions, abbreviations): + """Replace the abbreviations according to the key-pair value provided.""" + replaced_descriptions = [] + for description in tag_descriptions: + for abbreviation, replacement in abbreviations.items(): + description = re.sub(abbreviation, replacement, description) + + replaced_descriptions.append(description) + return replaced_descriptions + + def _cleanup_spaces(self, tag_descriptions): + # Replace all whitespace with a single space + replaced_descriptions = [] + for description in tag_descriptions: + description_clean = re.sub(r'\s+', ' ', description) + replaced_descriptions.append(description_clean) + return replaced_descriptions + + # remove all dots + def _cleanup_dots(self, tag_descriptions): + replaced_descriptions = [] + for description in tag_descriptions: + description_clean = re.sub(r'\.', '', description) + replaced_descriptions.append(description_clean) + return replaced_descriptions + + + def run(self): + df = self.df + + # %% + # Replace abbreviations + print("running substitution for descriptions") + # normalize to uppercase + # strip leading and trailing whitespace + df['tag_description'] = df['tag_description'].str.strip() + df['tag_description'] = df['tag_description'].str.upper() + # Replace whitespace-only entries with "NOVALUE" + # note that "N/A" can be read as nan + # replace whitespace only values as NOVALUE + df['tag_description']= df['tag_description'].fillna("NOVALUE") + df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True) + + # perform actual substitution + tag_descriptions = df['tag_description'] + replaced_descriptions = self._replace_abbreviations(tag_descriptions, desc_replacement_dict) + replaced_descriptions = self._cleanup_spaces(replaced_descriptions) + replaced_descriptions = self._cleanup_dots(replaced_descriptions) + df["tag_description"] = replaced_descriptions + # print("Descriptions after replacement:", replaced_descriptions) + + # %% + print("running substitutions for units") + df['unit'] = df['unit'].fillna("NOVALUE") + df['unit'] = df['unit'].replace(r'^\s*$', 'NOVALUE', regex=True) + unit_list = df['unit'] + new_unit = self._replace_abbreviations(unit_list, unit_replacement_dict) + new_unit = self._cleanup_spaces(new_unit) + df['unit'] = new_unit + + return df + diff --git a/end_to_end/replacement_dict.py b/end_to_end/replacement_dict.py new file mode 100644 index 0000000..2822200 --- /dev/null +++ b/end_to_end/replacement_dict.py @@ -0,0 +1,291 @@ +# substitution mapping for descriptions +# Abbreviations and their replacements +desc_replacement_dict = { + r'\bLIST\b': 'LIST', + # exhaust gas + r'\bE\. GAS\b': 'EXHAUST GAS', + r'\bEXH\.\b': 'EXHAUST', + r'\bEXH\b': 'EXHAUST', + r'\bEXHAUST\.\b': 'EXHAUST', + r'\bEXHAUST\b': 'EXHAUST', + r'\bBLR\.EXH\.\b': 'BOILER EXHAUST', + # temperature + r'\bTEMP\.\b': 'TEMPERATURE', + r'\bTEMP\b': 'TEMPERATURE', + r'\bTEMPERATURE\.\b': 'TEMPERATURE', + r'\bTEMPERATURE\b': 'TEMPERATURE', + # cylinder + r'\bCYL(\d+)\b': r'CYLINDER\1', + r'\bCYL\.(\d+)\b': r'CYLINDER\1', + r'\bCYL(?=\d|\W|$)\b': 'CYLINDER', + r'\bCYL\.\b': 'CYLINDER', + r'\bCYL\b': 'CYLINDER', + # cooling + r'\bCOOL\.\b': 'COOLING', + r'\bCOOLING\b': 'COOLING', + r'\bCOOLER\b': 'COOLER', + r'\bCW\b': 'COOLING WATER', + r'\bC\.W\b': 'COOLING WATER', + r'\bJ\.C\.F\.W\b': 'JACKET COOLING FEED WATER', + r'\bJ\.C F\.W\b': 'JACKET COOLING FEED WATER', + r'\bJACKET C\.F\.W\b': 'JACKET COOLING FEED WATER', + r'\bCOOL\. F\.W\b': 'COOLING FEED WATER', + r'\bC\.F\.W\b': 'COOLING FEED WATER', + # sea water + r'\bC\.S\.W\b': 'COOLING SEA WATER', + r'\bCSW\b': 'COOLING SEA WATER', + r'\bC.S.W\b': 'COOLING SEA WATER', + # water + r'\bFEED W\.\b': 'FEED WATER', + r'\bFEED W\b': 'FEED WATER', + r'\bF\.W\b': 'FEED WATER', + r'\bF\.W\.\b': 'FEED WATER', + r'\bFW\b': 'FEED WATER', + # r'\bWATER\b': 'WATER', + r'\bSCAV\.\b': 'SCAVENGE', + r'\bSCAV\b': 'SCAVENGE', + r'\bINL\.\b': 'INLET', + r'\bINLET\b': 'INLET', + r'\bOUT\.\b': 'OUTLET', + r'\bOUTL\.\b': 'OUTLET', + r'\bOUTLET\b': 'OUTLET', + # tank + r'\bSTOR\.TK\b': 'STORAGE TANK', + r'\bSTOR\. TK\b': 'STORAGE TANK', + r'\bSERV\. TK\b': 'SERVICE TANK', + r'\bSETT\. TK\b': 'SETTLING TANK', + r'\bBK\b': 'BUNKER', + r'\bTK\b': 'TANK', + # PRESSURE + r'\bPRESS\b': 'PRESSURE', + r'\bPRESS\.\b': 'PRESSURE', + r'\bPRESSURE\b': 'PRESSURE', + r'PRS\b': 'PRESSURE', # this is a special replacement - it is safe to replace PRS w/o checks + # ENGINE + r'\bENG\.\b': 'ENGINE', + r'\bENG\b': 'ENGINE', + r'\bENGINE\b': 'ENGINE', + r'\bENGINE SPEED\b': 'ENGINE SPEED', + r'\bENGINE RUNNING\b': 'ENGINE RUNNING', + r'\bENGINE RPM PICKUP\b': 'ENGINE RPM PICKUP', + r'\bENGINE ROOM\b': 'ENGINE ROOM', + r'\bE/R\b': 'ENGINE ROOM', + # MAIN ENGINE + r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE', + r'\bM/E NO(\d+)\b': r'NO\1 MAIN_ENGINE', + r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE', + r'\bME NO.(\d+)\b': r'NO\1 MAIN_ENGINE', + r'\bM/E\b': 'MAIN_ENGINE', + r'\bM/E(.)\b': r'MAIN_ENGINE \1', # M/E(S/P) + r'\bME(.)\b': r'MAIN_ENGINE \1', # ME(S/P) + r'\bM_E\b': 'MAIN_ENGINE', + r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE', + r'\bMAIN ENGINE\b': 'MAIN_ENGINE', + # ENGINE variants + r'\bM_E_RPM\b': 'MAIN ENGINE RPM', + r'\bM/E_M\.G\.O\.\b': 'MAIN ENGINE MARINE GAS OIL', + r'\bM/E_H\.F\.O\.\b': 'MAIN ENGINE HEAVY FUEL OIL', + # GENERATOR ENGINE + r'\bGEN(\d+)\b': r'NO\1 GENERATOR_ENGINE', + r'\bGE(\d+)\b': r'NO\1 GENERATOR_ENGINE', + # ensure that we substitute only for terms where following GE is num or special + r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE', + r'\bG/E(\d+)\b': r'NO\1 GENERATOR_ENGINE', + r'\bG/E\b': r'GENERATOR_ENGINE', + r'\bG_E(\d+)\b': r'NO\1 GENERATOR_ENGINE', + r'\bG_E\b': 'GENERATOR_ENGINE', + r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE', + r'\bG/E_M\.G\.O\b': 'GENERATOR_ENGINE MARINE GAS OIL', + # DG + r'\bDG(\d+)\b': r'NO\1 GENERATOR_ENGINE', + r'\bDG\b': 'GENERATOR_ENGINE', + r'\bD/G\b': 'GENERATOR_ENGINE', + r'\bDG(\d+)\((.)\)\b': r'NO\1\2 GENERATOR_ENGINE', # handle DG2(A) + r'\bDG(\d+[A-Za-z])\b': r'NO\1 GENERATOR_ENGINE', # handle DG2A + # DG variants + r'\bDG_CURRENT\b': 'GENERATOR_ENGINE CURRENT', + r'\bDG_LOAD\b': 'GENERATOR_ENGINE LOAD', + r'\bDG_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY', + r'\bDG_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE', + r'\bDG_CLOSED\b': 'GENERATOR_ENGINE CLOSED', + r'\bD/G_CURRENT\b': 'GENERATOR_ENGINE CURRENT', + r'\bD/G_LOAD\b': 'GENERATOR_ENGINE LOAD', + r'\bD/G_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY', + r'\bD/G_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE', + r'\bD/G_CLOSED\b': 'GENERATOR_ENGINE CLOSED', + # MGE + r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE', + # generator engine and mgo + r'\bG/E_M\.G\.O\.\b': r'GENERATOR_ENGINE MARINE GAS OIL', + r'\bG/E_H\.F\.O\.\b': r'GENERATOR_ENGINE HEAVY FUEL OIL', + # ultra low sulfur fuel oil + r'\bU\.L\.S\.F\.O\b': 'ULTRA LOW SULFUR FUEL OIL', + r'\bULSFO\b': 'ULTRA LOW SULFUR FUEL OIL', + # marine gas oil + r'\bM\.G\.O\b': 'MARINE GAS OIL', + r'\bMGO\b': 'MARINE GAS OIL', + r'\bMDO\b': 'MARINE DIESEL OIL', + # light fuel oil + r'\bL\.F\.O\b': 'LIGHT FUEL OIL', + r'\bLFO\b': 'LIGHT FUEL OIL', + # heavy fuel oil + r'\bHFO\b': 'HEAVY FUEL OIL', + r'\bH\.F\.O\b': 'HEAVY FUEL OIL', + # piston cooling oil + r'\bPCO\b': 'PISTON COOLING OIL', + r'\bP\.C\.O\.\b': 'PISTON COOLING OIL', + r'\bP\.C\.O\b': 'PISTON COOLING OIL', + r'PISTION C.O': 'PISTON COOLING OIL', + # diesel oil + r'\bD.O\b': 'DIESEL OIL', + # for remaining fuel oil that couldn't be substituted + r'\bF\.O\b': 'FUEL OIL', + r'\bFO\b': 'FUEL OIL', + # lubricant + r'\bLUB\.\b': 'LUBRICANT', + r'\bLUBE\b': 'LUBRICANT', + r'\bLUBR\.\b': 'LUBRICANT', + r'\bLUBRICATING\.\b': 'LUBRICANT', + r'\bLUBRICATION\.\b': 'LUBRICANT', + # lubricating oil + r'\bL\.O\b': 'LUBRICATING OIL', + r'\bLO\b': 'LUBRICATING OIL', + # lubricating oil pressure + r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE', + r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE', + # temperature + r'\bL\.T\b': 'LOW TEMPERATURE', + r'\bLT\b': 'LOW TEMPERATURE', + r'\bH\.T\b': 'HIGH TEMPERATURE', + r'\bHT\b': 'HIGH TEMPERATURE', + # BOILER + # auxiliary boiler + # replace these first before replacing AUXILIARY only + r'\bAUX\.BOILER\b': 'AUXILIARY BOILER', + r'\bAUX\. BOILER\b': 'AUXILIARY BOILER', + r'\bAUX BLR\b': 'AUXILIARY BOILER', + r'\bAUX\.\b': 'AUXILIARY', + r'\bAUX\b': 'AUXILIARY', + # composite boiler + r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER', + r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER', + r'\bCOMP BOILER\b': 'COMPOSITE BOILER', + r'\bCOMP\b': 'COMPOSITE', + r'\bCMPS\b': 'COMPOSITE', + # any other boiler + r'\bBLR\.\b': 'BOILER', + r'\bBLR\b': 'BOILER', + r'\bBOILER W.CIRC.P/P\b': 'BOILER WATER CIRC P/P', + # windind + r'\bWIND\.\b': 'WINDING', + r'\bWINDING\b': 'WINDING', + # VOLTAGE/FREQ/CURRENT + r'\bVLOT\.': 'VOLTAGE', # correct spelling + r'\bVOLT\.': 'VOLTAGE', + r'\bVOLTAGE\b': 'VOLTAGE', + r'\bFREQ\.': 'FREQUENCY', + r'\bFREQUENCY\b': 'FREQUENCY', + r'\bCURR\.': 'CURRENT', + r'\bCURRENT\b': 'CURRENT', + # TURBOCHARGER + r'\bTCA\b': 'TURBOCHARGER', + r'\bTCB\b': 'TURBOCHARGER', + r'\bT/C\b': 'TURBOCHARGER', + r'\bT_C\b': 'TURBOCHARGER', + r'\bT/C_RPM\b': 'TURBOCHARGER RPM', + r'\bTC(\d+)\b': r'TURBOCHARGER\1', + r'\bT/C(\d+)\b': r'TURBOCHARGER\1', + r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER', + r'\bTURBOCHAGER\b': 'TURBOCHARGER', + r'\bTURBOCHARGER\b': 'TURBOCHARGER', + r'\bTURBOCHG\b': 'TURBOCHARGER', + # misc spelling errors + r'\bOPERATOIN\b': 'OPERATION', + # wrongly attached terms + r'\bBOILERMGO\b': 'BOILER MGO', + # additional standardizing replacement + # replace # followed by a number with NO + r'#(?=\d)\b': 'NO', + r'\bNO\.(?=\d)\b': 'NO', + r'\bNO\.\.(?=\d)\b': 'NO', + # others: + # generator + r'\bGEN\.\b': 'GENERATOR', + # others + r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE', + r'\bFLTR\b': 'FILTER', + r'\bCLR\b': 'CLEAR', +} + +# substitution mapping for units +# Abbreviations and their replacements +unit_replacement_dict = { + r'\b%\b': 'PERCENT', + r'\b-\b': '', + r'\b- \b': '', + # ensure no character after A + r'\bA(?!\w|/)': 'CURRENT', + r'\bAmp(?!\w|/)': 'CURRENT', + r'\bHz\b': 'HERTZ', + r'\bKG/CM2\b': 'PRESSURE', + r'\bKG/H\b': 'KILOGRAM PER HOUR', + r'\bKNm\b': 'RPM', + r'\bKW\b': 'POWER', + r'\bKg(?!\w|/)': 'MASS', + r'\bKw\b': 'POWER', + r'\bL(?!\w|/)': 'VOLUME', + r'\bMT/h\b': 'METRIC TONNES PER HOUR', + r'\bMpa\b': 'PRESSURE', + r'\bPF\b': 'POWER FACTOR', + r'\bRPM\b': 'RPM', + r'\bV(?!\w|/)': 'VOLTAGE', + r'\bbar(?!\w|/)': 'PRESSURE', + r'\bbarA\b': 'SCAVENGE PRESSURE', + r'\bcST\b': 'VISCOSITY', + r'\bcSt\b': 'VISCOSITY', + r'\bcst\b': 'VISCOSITY', + r'\bdeg(?!\w|/|\.)': 'DEGREE', + r'\bdeg.C\b': 'TEMPERATURE', + r'\bdegC\b': 'TEMPERATURE', + r'\bdegree\b': 'DEGREE', + r'\bdegreeC\b': 'TEMPERATURE', + r'\bhPa\b': 'PRESSURE', + r'\bhours\b': 'HOURS', + r'\bkN\b': 'THRUST', + r'\bkNm\b': 'TORQUE', + r'\bkW\b': 'POWER', + # ensure that kg is not followed by anything + r'\bkg(?!\w|/)': 'FLOW', # somehow in the data its flow + r'\bkg/P\b': 'MASS FLOW', + r'\bkg/cm2\b': 'PRESSURE', + r'\bkg/cm²\b': 'PRESSURE', + r'\bkg/h\b': 'MASS FLOW', + r'\bkg/hr\b': 'MASS FLOW', + r'\bkg/pulse\b': '', + r'\bkgf/cm2\b': 'PRESSURE', + r'\bkgf/cm²\b': 'PRESSURE', + r'\bkgf/㎠\b': 'PRESSURE', + r'\bknots\b': 'SPEED', + r'\bkw\b': 'POWER', + r'\bl/Hr\b': 'VOLUME FLOW', + r'\bl/h\b': 'VOLUME FLOW', + r'\bl_Hr\b': 'VOLUME FLOW', + r'\bl_hr\b': 'VOLUME FLOW', + r'\bM\b': 'DRAFT', # for wind draft + r'm': 'm', # wind draft and trim - not useful + r'\bm/s\b': 'SPEED', + r'\bm3\b': 'VOLUME', + r'\bmH2O\b': 'DRAFT', + r'\bmWC\b': 'DRAFT', + r'\bmbar\b': 'PRESSURE', + r'\bmg\b': 'ACCELERATION', + r'\bmin-¹\b': '', # data too varied + r'\bmm\b': '', # data too varied + r'\bmmH2O\b': 'WATER DRUM LEVEL', + r'\brev\b': 'RPM', + r'\brpm\b': 'RPM', + r'\bx1000min-¹\b': '', + r'\b°C\b': 'TEMPERATURE', + r'\bºC\b': 'TEMPERATURE', + r'\b℃\b': 'TEMPERATURE' +} \ No newline at end of file diff --git a/end_to_end/run.py b/end_to_end/run.py new file mode 100644 index 0000000..8182821 --- /dev/null +++ b/end_to_end/run.py @@ -0,0 +1,64 @@ +# %% +import pandas as pd +import os +import glob +from mapper import Mapper +from preprocess import Abbreviator +from deduplication import run_deduplication + +# global config +BATCH_SIZE = 1024 +SHIPS_LIST = [1000,1001,1003] + +# %% +# START: we import the raw data csv and extract only a few ships from it to simulate incoming json +data_path = 'raw_data.csv' +full_df = pd.read_csv(data_path, skipinitialspace=True) +# subset ships only to that found in SHIPS_LIST +df = full_df[full_df['ships_idx'].isin(SHIPS_LIST)].reset_index(drop=True) + +num_rows = 2000 +df = df[:num_rows] +print(len(df)) + +# pre-process data +abbreviator = Abbreviator(df) +df = abbreviator.run() + +# %% +########################################## +# run mapping +# checkpoint +# Use glob to find matching paths +checkpoint_path = 'models/mapping_model' +mapper = Mapper(checkpoint_path) +mapper.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128) +thing_prediction_list, property_prediction_list = mapper.generate() + +# add labels too +# thing_actual_list, property_actual_list = decode_preds(pred_labels) +# Convert the list to a Pandas DataFrame +df_out = pd.DataFrame({ + 'p_thing': thing_prediction_list, + 'p_property': property_prediction_list +}) +# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing'] +# df_out['p_property_correct'] = df_out['p_property'] == df_out['property'] +df = pd.concat([df, df_out], axis=1) + + +# %% +#################################### +# run de_duplication with thresholding +data_path = "train_all.csv" +train_df = pd.read_csv(data_path, skipinitialspace=True) +train_df['mapping'] = train_df['thing'] + " " + train_df['property'] + +df = run_deduplication( + test_df=df, + train_df=train_df, + batch_size=BATCH_SIZE, + threshold=0.9, + diagnostic=True) + +# %% diff --git a/post_process/de_duplication/utils.py b/post_process/de_duplication/utils.py index 2c1f6ee..157e90a 100644 --- a/post_process/de_duplication/utils.py +++ b/post_process/de_duplication/utils.py @@ -3,9 +3,7 @@ from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM, - DataCollatorWithPadding, ) -import torch.nn.functional as F @@ -24,7 +22,7 @@ class BertEmbedder: self.model = model.eval() - def make_embedding(self, batch_size=64): + def make_embedding(self, batch_size=128): all_embeddings = self.embeddings input_texts = self.inputs