learn_jax/t5_model/configuration_t5.py

118 lines
4.2 KiB
Python

# coding=utf-8
# Copyright 2020, The T5 Authors and HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""T5 model configuration"""
from typing import Mapping
from transformers import PretrainedConfig
from transformers import logging
from etils import edc
logger = logging.get_logger(__name__)
class T5Config(PretrainedConfig):
model_type = "t5"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__(
self,
vocab_size=32128, # vocab size here
d_model=512,
d_kv=64,
d_ff=2048,
num_layers=6,
num_decoder_layers=None,
num_heads=8,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
feed_forward_proj="relu",
is_encoder_decoder=True,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
classifier_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.d_model = d_model
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_decoder_layers = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.classifier_dropout = classifier_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.feed_forward_proj = feed_forward_proj
self.use_cache = use_cache
self.use_bfloat16 = True
act_info = self.feed_forward_proj.split("-")
self.dense_act_fn = act_info[-1]
self.is_gated_act = act_info[0] == "gated"
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'"
)
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
self.dense_act_fn = "gelu_new"
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
# class T5OnnxConfig(OnnxSeq2SeqConfigWithPast):
# @property
# def inputs(self) -> Mapping[str, Mapping[int, str]]:
# common_inputs = {
# "input_ids": {0: "batch", 1: "encoder_sequence"},
# "attention_mask": {0: "batch", 1: "encoder_sequence"},
# }
# if self.use_past:
# common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
# common_inputs["decoder_input_ids"] = {0: "batch"}
# common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
# else:
# common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
# common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
#
# if self.use_past:
# self.fill_with_past_key_values_(common_inputs, direction="inputs")
#
# return common_inputs
#
# @property
# def default_onnx_opset(self) -> int:
# return 13