# coding=utf-8 # Copyright 2020, The T5 Authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """T5 model configuration""" from typing import Mapping from transformers import PretrainedConfig from transformers import logging from etils import edc logger = logging.get_logger(__name__) class T5Config(PretrainedConfig): model_type = "t5" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=32128, # vocab size here d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="relu", is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, classifier_dropout=0.0, **kwargs, ): self.vocab_size = vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.classifier_dropout = classifier_dropout self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache self.use_bfloat16 = True act_info = self.feed_forward_proj.split("-") self.dense_act_fn = act_info[-1] self.is_gated_act = act_info[0] == "gated" if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": self.dense_act_fn = "gelu_new" super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, ) # class T5OnnxConfig(OnnxSeq2SeqConfigWithPast): # @property # def inputs(self) -> Mapping[str, Mapping[int, str]]: # common_inputs = { # "input_ids": {0: "batch", 1: "encoder_sequence"}, # "attention_mask": {0: "batch", 1: "encoder_sequence"}, # } # if self.use_past: # common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" # common_inputs["decoder_input_ids"] = {0: "batch"} # common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} # else: # common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} # common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} # # if self.use_past: # self.fill_with_past_key_values_(common_inputs, direction="inputs") # # return common_inputs # # @property # def default_onnx_opset(self) -> int: # return 13