Feat: added more classification and mapping variations
Feat: added grid-search for threshold in similarity-classifier Feat: added more abbreviation rules
This commit is contained in:
parent
1f3970459f
commit
ff6e11a3c0
|
@ -0,0 +1,293 @@
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
from utils import Retriever, cosine_similarity_chunked
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# %%
|
||||||
|
fold = 5
|
||||||
|
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# subset to mdm
|
||||||
|
df = df[df['MDM']]
|
||||||
|
|
||||||
|
# create new fields 'mapping' and 'p_mapping'
|
||||||
|
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||||
|
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||||
|
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||||
|
|
||||||
|
|
||||||
|
thing_condition = df['p_thing'] == df['thing']
|
||||||
|
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||||
|
|
||||||
|
property_condition = df['p_property'] == df['property']
|
||||||
|
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||||
|
|
||||||
|
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||||
|
|
||||||
|
test_df = df
|
||||||
|
|
||||||
|
# %%
|
||||||
|
print(len(error_thing_df))
|
||||||
|
print(len(error_property_df))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# thing_df.to_html('thing_errors.html')
|
||||||
|
# property_df.to_html('property_errors.html')
|
||||||
|
|
||||||
|
##########################################
|
||||||
|
# what we need now is understand why the model is making these mispredictions
|
||||||
|
# import train data and test data
|
||||||
|
# %%
|
||||||
|
class Embedder():
|
||||||
|
input_df: pd.DataFrame
|
||||||
|
fold: int
|
||||||
|
|
||||||
|
def __init__(self, input_df):
|
||||||
|
self.input_df = input_df
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, checkpoint_path):
|
||||||
|
|
||||||
|
def generate_input_list(df):
|
||||||
|
input_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
element = f"{desc}{unit}"
|
||||||
|
input_list.append(element)
|
||||||
|
return input_list
|
||||||
|
|
||||||
|
# prepare reference embed
|
||||||
|
train_data = list(generate_input_list(self.input_df))
|
||||||
|
# Define the directory and the pattern
|
||||||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||||||
|
retriever_train.make_embedding(batch_size=64)
|
||||||
|
return retriever_train.embeddings.to('cpu')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||||
|
|
||||||
|
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
test_embedder = Embedder(input_df=test_df)
|
||||||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# test embeds are inputs since we are looking back at train data
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# the following function takes in a full cos_sim_matrix
|
||||||
|
# condition_source: boolean selectors of the source embedding
|
||||||
|
# condition_target: boolean selectors of the target embedding
|
||||||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||||||
|
# except we are subsetting 2D matrix (row, column)
|
||||||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||||
|
# we select top k here
|
||||||
|
# Get the indices of the top 5 maximum values along axis 1
|
||||||
|
top_k = 3
|
||||||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||||
|
# the result is flipped
|
||||||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||||||
|
|
||||||
|
# Get the values of the top 5 maximum scores
|
||||||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
return top_k_indices, top_k_values
|
||||||
|
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
# special find-back code
|
||||||
|
# %%
|
||||||
|
def find_back_element_with_print(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||||
|
test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0]
|
||||||
|
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||||
|
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||||
|
predicted_test_data = predicted_test_data.to_list()[0]
|
||||||
|
|
||||||
|
print("*" * 80)
|
||||||
|
print("idx:", select_idx)
|
||||||
|
print("train desc", training_desc_list)
|
||||||
|
print("train thing+property", training_data_pattern_list)
|
||||||
|
print("test desc", test_desc_list)
|
||||||
|
print("test thing+property", test_data_pattern_list)
|
||||||
|
print("predicted thing+property", predicted_test_data)
|
||||||
|
print("ships idx", test_ship_id)
|
||||||
|
print("score:", top_k_values[0])
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def find_back_element(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
|
||||||
|
# print(training_data_pattern_list)
|
||||||
|
# print(test_data_pattern_list)
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# for error thing
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_thing_df.index:
|
||||||
|
result = find_back_element_with_print(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
###
|
||||||
|
# for error property
|
||||||
|
# %%
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_property_df.index:
|
||||||
|
result = find_back_element_with_print(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# make function to compute similarity of closest retrieved result
|
||||||
|
def compute_similarity(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
return np.mean(top_k_values[0])
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def print_summary(similarity_scores):
|
||||||
|
# Convert list to numpy array for additional stats
|
||||||
|
np_array = np.array(similarity_scores)
|
||||||
|
|
||||||
|
# Get stats
|
||||||
|
mean_value = np.mean(np_array)
|
||||||
|
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||||
|
|
||||||
|
# Display numpy results
|
||||||
|
print("Mean:", mean_value)
|
||||||
|
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
##########################################
|
||||||
|
# Analyze the degree of similarity differences between correct and incorrect results
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute similarity scores for all values in error_thing_df
|
||||||
|
similarity_thing_scores = []
|
||||||
|
for idx in error_thing_df.index:
|
||||||
|
similarity_thing_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_thing_scores)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_property_scores = []
|
||||||
|
for idx in error_property_df.index:
|
||||||
|
similarity_property_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_property_scores)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_correct_scores = []
|
||||||
|
for idx in correct_df.index:
|
||||||
|
similarity_correct_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_correct_scores)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# Sample data
|
||||||
|
list1 = similarity_thing_scores
|
||||||
|
list2 = similarity_property_scores
|
||||||
|
list3 = similarity_correct_scores
|
||||||
|
|
||||||
|
# Plot histograms
|
||||||
|
bins = 50
|
||||||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||||
|
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||||
|
|
||||||
|
# Labels and legend
|
||||||
|
plt.xlabel('Value')
|
||||||
|
plt.ylabel('Frequency')
|
||||||
|
plt.legend(loc='upper right')
|
||||||
|
plt.title('Histograms of Three Lists')
|
||||||
|
|
||||||
|
# Show plot
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
|
@ -0,0 +1,320 @@
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
from utils import Retriever, cosine_similarity_chunked
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# %%
|
||||||
|
fold = 5
|
||||||
|
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# subset to mdm
|
||||||
|
df = df[df['MDM']]
|
||||||
|
|
||||||
|
# create new fields 'mapping' and 'p_mapping'
|
||||||
|
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||||
|
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||||
|
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||||
|
|
||||||
|
|
||||||
|
thing_condition = df['p_thing'] == df['thing']
|
||||||
|
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||||
|
|
||||||
|
property_condition = df['p_property'] == df['property']
|
||||||
|
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||||
|
|
||||||
|
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||||
|
|
||||||
|
test_df = df
|
||||||
|
|
||||||
|
# %%
|
||||||
|
print(len(error_thing_df))
|
||||||
|
print(len(error_property_df))
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# thing_df.to_html('thing_errors.html')
|
||||||
|
# property_df.to_html('property_errors.html')
|
||||||
|
|
||||||
|
##########################################
|
||||||
|
# what we need now is understand why the model is making these mispredictions
|
||||||
|
# import train data and test data
|
||||||
|
# %%
|
||||||
|
class Embedder():
|
||||||
|
input_df: pd.DataFrame
|
||||||
|
fold: int
|
||||||
|
|
||||||
|
def __init__(self, input_df):
|
||||||
|
self.input_df = input_df
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, checkpoint_path):
|
||||||
|
|
||||||
|
def generate_input_list(df):
|
||||||
|
input_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
element = f"{desc}{unit}"
|
||||||
|
input_list.append(element)
|
||||||
|
return input_list
|
||||||
|
|
||||||
|
# prepare reference embed
|
||||||
|
train_data = list(generate_input_list(self.input_df))
|
||||||
|
# Define the directory and the pattern
|
||||||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||||||
|
retriever_train.make_embedding(batch_size=64)
|
||||||
|
return retriever_train.embeddings.to('cpu')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||||
|
|
||||||
|
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
test_embedder = Embedder(input_df=test_df)
|
||||||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# test embeds are inputs since we are looking back at train data
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# the following function takes in a full cos_sim_matrix
|
||||||
|
# condition_source: boolean selectors of the source embedding
|
||||||
|
# condition_target: boolean selectors of the target embedding
|
||||||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||||||
|
# except we are subsetting 2D matrix (row, column)
|
||||||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||||
|
# we select top k here
|
||||||
|
# Get the indices of the top 5 maximum values along axis 1
|
||||||
|
top_k = 10
|
||||||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||||
|
# the result is flipped
|
||||||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||||||
|
|
||||||
|
# Get the values of the top 5 maximum scores
|
||||||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
return top_k_indices, top_k_values
|
||||||
|
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
# special find-back code
|
||||||
|
# %%
|
||||||
|
def find_back_element_with_print(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||||
|
test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0]
|
||||||
|
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||||
|
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||||
|
predicted_test_data = predicted_test_data.to_list()[0]
|
||||||
|
|
||||||
|
print("*" * 80)
|
||||||
|
print("idx:", select_idx)
|
||||||
|
print("train desc", training_desc_list)
|
||||||
|
print("train thing+property", training_data_pattern_list)
|
||||||
|
print("test desc", test_desc_list)
|
||||||
|
print("test thing+property", test_data_pattern_list)
|
||||||
|
print("predicted thing+property", predicted_test_data)
|
||||||
|
print("ships idx", test_ship_id)
|
||||||
|
print("score:", top_k_values[0])
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def find_back_element(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
|
||||||
|
# print(training_data_pattern_list)
|
||||||
|
# print(test_data_pattern_list)
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# for entire test df
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in test_df.index:
|
||||||
|
result = find_back_element(select_idx)
|
||||||
|
# print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# within pattern in train, what is the "correct" rate?
|
||||||
|
sub_df = test_df[pattern_in_train]
|
||||||
|
result = sub_df['mapping'] == sub_df['p_mapping']
|
||||||
|
|
||||||
|
# this is the realistic label result
|
||||||
|
print(sum(result)/len(result)) # this is the more realistic result
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# for pattern not in training data, what is the "correct" rate?
|
||||||
|
# within pattern in train, what is the "correct" rate?
|
||||||
|
sub_df = test_df[~np.array(pattern_in_train)]
|
||||||
|
result = sub_df['mapping'] == sub_df['p_mapping']
|
||||||
|
|
||||||
|
print(sum(result)/len(result))
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# for error thing
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_thing_df.index:
|
||||||
|
result = find_back_element_with_print(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
###
|
||||||
|
# for error property
|
||||||
|
# %%
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_property_df.index:
|
||||||
|
result = find_back_element_with_print(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# make function to compute similarity of closest retrieved result
|
||||||
|
def compute_similarity(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
return np.mean(top_k_values[0])
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def print_summary(similarity_scores):
|
||||||
|
# Convert list to numpy array for additional stats
|
||||||
|
np_array = np.array(similarity_scores)
|
||||||
|
|
||||||
|
# Get stats
|
||||||
|
mean_value = np.mean(np_array)
|
||||||
|
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||||
|
|
||||||
|
# Display numpy results
|
||||||
|
print("Mean:", mean_value)
|
||||||
|
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
##########################################
|
||||||
|
# Analyze the degree of similarity differences between correct and incorrect results
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute similarity scores for all values in error_thing_df
|
||||||
|
similarity_thing_scores = []
|
||||||
|
for idx in error_thing_df.index:
|
||||||
|
similarity_thing_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_thing_scores)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_property_scores = []
|
||||||
|
for idx in error_property_df.index:
|
||||||
|
similarity_property_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_property_scores)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_correct_scores = []
|
||||||
|
for idx in correct_df.index:
|
||||||
|
similarity_correct_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_correct_scores)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# Sample data
|
||||||
|
list1 = similarity_thing_scores
|
||||||
|
list2 = similarity_property_scores
|
||||||
|
list3 = similarity_correct_scores
|
||||||
|
|
||||||
|
# Plot histograms
|
||||||
|
bins = 50
|
||||||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||||
|
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||||
|
|
||||||
|
# Labels and legend
|
||||||
|
plt.xlabel('Value')
|
||||||
|
plt.ylabel('Frequency')
|
||||||
|
plt.legend(loc='upper right')
|
||||||
|
plt.title('Histograms of Three Lists')
|
||||||
|
|
||||||
|
# Show plot
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
|
@ -7,7 +7,7 @@ import glob
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
data_path = f'../data_preprocess/exports/preprocessed_data.csv'
|
data_path = f'../../data_preprocess/exports/preprocessed_data.csv'
|
||||||
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -18,8 +18,8 @@ desc_list = df_pre['tag_description'].to_list()
|
||||||
[ elem for elem in desc_list if isinstance(elem, float)]
|
[ elem for elem in desc_list if isinstance(elem, float)]
|
||||||
##########################################
|
##########################################
|
||||||
# %%
|
# %%
|
||||||
fold = 1
|
fold = 5
|
||||||
data_path = f'../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -74,10 +74,10 @@ class Embedder():
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
checkpoint_directory = "../train/mapping_pattern"
|
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit"
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
# Use glob to find matching paths
|
# Use glob to find matching paths
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
@ -199,12 +199,15 @@ for select_idx in error_thing_df.index:
|
||||||
print("status:", result)
|
print("status:", result)
|
||||||
pattern_in_train.append(result)
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
###
|
###
|
||||||
# for error property
|
# for error property
|
||||||
# %%
|
# %%
|
||||||
pattern_in_train = []
|
pattern_in_train = []
|
||||||
for select_idx in error_property_df.index:
|
for select_idx in error_property_df.index:
|
||||||
result = find_back_element_with_print(select_idx)
|
result = find_back_element(select_idx)
|
||||||
print("status:", result)
|
print("status:", result)
|
||||||
pattern_in_train.append(result)
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,334 @@
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
from utils import Retriever, cosine_similarity_chunked
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# %%
|
||||||
|
data_path = f'../../data_preprocess/exports/preprocessed_data.csv'
|
||||||
|
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# remove nulls or NAs
|
||||||
|
df_pre['tag_description'] = df_pre['tag_description'].fillna("NOVALUE")
|
||||||
|
df_pre['tag_description'] = df_pre['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||||
|
|
||||||
|
df_pre['unit'] = df_pre['unit'].fillna("NOVALUE")
|
||||||
|
df_pre['unit'] = df_pre['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# this should be >0 if we are using abbreviations processed data
|
||||||
|
desc_list = df_pre['tag_description'].to_list()
|
||||||
|
|
||||||
|
# check for floats
|
||||||
|
# we have to eliminate presence of floats
|
||||||
|
[ elem for elem in desc_list if isinstance(elem, float)]
|
||||||
|
##########################################
|
||||||
|
# %%
|
||||||
|
fold = 5
|
||||||
|
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# subset to mdm
|
||||||
|
df = df[df['MDM']]
|
||||||
|
|
||||||
|
# create new fields 'mapping' and 'p_mapping'
|
||||||
|
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||||
|
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||||
|
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||||
|
|
||||||
|
|
||||||
|
thing_condition = df['p_thing'] == df['thing']
|
||||||
|
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||||
|
|
||||||
|
property_condition = df['p_property'] == df['property']
|
||||||
|
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||||
|
|
||||||
|
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||||
|
|
||||||
|
test_df = df
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# thing_df.to_html('thing_errors.html')
|
||||||
|
# property_df.to_html('property_errors.html')
|
||||||
|
print(len(error_thing_df))
|
||||||
|
print(len(error_property_df))
|
||||||
|
|
||||||
|
##########################################
|
||||||
|
# what we need now is understand why the model is making these mispredictions
|
||||||
|
# import train data and test data
|
||||||
|
# %%
|
||||||
|
class Embedder():
|
||||||
|
input_df: pd.DataFrame
|
||||||
|
fold: int
|
||||||
|
|
||||||
|
def __init__(self, input_df):
|
||||||
|
self.input_df = input_df
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, checkpoint_path):
|
||||||
|
|
||||||
|
def generate_input_list(df):
|
||||||
|
input_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
# name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
# element = f"{name}{desc}"
|
||||||
|
element = f"{desc}{unit}"
|
||||||
|
input_list.append(element)
|
||||||
|
return input_list
|
||||||
|
|
||||||
|
# prepare reference embed
|
||||||
|
train_data = list(generate_input_list(self.input_df))
|
||||||
|
# Define the directory and the pattern
|
||||||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||||||
|
retriever_train.make_mean_embedding(batch_size=64)
|
||||||
|
return retriever_train.embeddings.to('cpu')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||||
|
|
||||||
|
# remove NAs from train_df
|
||||||
|
train_df['tag_description'] = train_df['tag_description'].fillna("NOVALUE")
|
||||||
|
train_df['tag_description'] = train_df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||||
|
|
||||||
|
train_df['unit'] = train_df['unit'].fillna("NOVALUE")
|
||||||
|
train_df['unit'] = train_df['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit"
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
test_embedder = Embedder(input_df=test_df)
|
||||||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# test embeds are inputs since we are looking back at train data
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# the following function takes in a full cos_sim_matrix
|
||||||
|
# condition_source: boolean selectors of the source embedding
|
||||||
|
# condition_target: boolean selectors of the target embedding
|
||||||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||||||
|
# except we are subsetting 2D matrix (row, column)
|
||||||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||||
|
# we select top k here
|
||||||
|
# Get the indices of the top 5 maximum values along axis 1
|
||||||
|
top_k = 3
|
||||||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||||
|
# the result is flipped
|
||||||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||||||
|
|
||||||
|
# Get the values of the top 5 maximum scores
|
||||||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
return top_k_indices, top_k_values
|
||||||
|
|
||||||
|
# %%
|
||||||
|
error_thing_df.index
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
# special find-back code
|
||||||
|
# %%
|
||||||
|
def find_back_element_with_print(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||||
|
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||||
|
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||||
|
predicted_test_data = predicted_test_data.to_list()[0]
|
||||||
|
|
||||||
|
print("*" * 80)
|
||||||
|
print("idx:", select_idx)
|
||||||
|
print("train desc", training_desc_list)
|
||||||
|
print("train thing+property", training_data_pattern_list)
|
||||||
|
print("test desc", test_desc_list)
|
||||||
|
print("test thing+property", test_data_pattern_list)
|
||||||
|
print("predicted thing+property", predicted_test_data)
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
find_back_element_with_print(0)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def find_back_element(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||||
|
|
||||||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||||
|
|
||||||
|
# print(training_data_pattern_list)
|
||||||
|
# print(test_data_pattern_list)
|
||||||
|
|
||||||
|
test_pattern = test_data_pattern_list[0]
|
||||||
|
|
||||||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||||
|
|
||||||
|
if sum(find_back_list) > 0:
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
find_back_element(2884)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# for error thing
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_thing_df.index:
|
||||||
|
result = find_back_element_with_print(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
###
|
||||||
|
# for error property
|
||||||
|
# %%
|
||||||
|
pattern_in_train = []
|
||||||
|
for select_idx in error_property_df.index:
|
||||||
|
result = find_back_element(select_idx)
|
||||||
|
print("status:", result)
|
||||||
|
pattern_in_train.append(result)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
sum(pattern_in_train)/len(pattern_in_train)
|
||||||
|
|
||||||
|
|
||||||
|
####################################################
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# make function to compute similarity of closest retrieved result
|
||||||
|
def compute_similarity(select_idx):
|
||||||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||||
|
top_k_indices, top_k_values = find_closest(
|
||||||
|
cos_sim_matrix=cos_sim_matrix,
|
||||||
|
condition_source=condition_source,
|
||||||
|
condition_target=condition_target)
|
||||||
|
|
||||||
|
return np.mean(top_k_values[0])
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def print_summary(similarity_scores):
|
||||||
|
# Convert list to numpy array for additional stats
|
||||||
|
np_array = np.array(similarity_scores)
|
||||||
|
|
||||||
|
# Get stats
|
||||||
|
mean_value = np.mean(np_array)
|
||||||
|
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||||
|
|
||||||
|
# Display numpy results
|
||||||
|
print("Mean:", mean_value)
|
||||||
|
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
##########################################
|
||||||
|
# Analyze the degree of similarity differences between correct and incorrect results
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute similarity scores for all values in error_thing_df
|
||||||
|
similarity_thing_scores = []
|
||||||
|
for idx in error_thing_df.index:
|
||||||
|
similarity_thing_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_thing_scores)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_property_scores = []
|
||||||
|
for idx in error_property_df.index:
|
||||||
|
similarity_property_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_property_scores)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
similarity_correct_scores = []
|
||||||
|
for idx in correct_df.index:
|
||||||
|
similarity_correct_scores.append(compute_similarity(idx))
|
||||||
|
print_summary(similarity_correct_scores)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
# Sample data
|
||||||
|
list1 = similarity_thing_scores
|
||||||
|
list2 = similarity_property_scores
|
||||||
|
list3 = similarity_correct_scores
|
||||||
|
|
||||||
|
# Plot histograms
|
||||||
|
bins = 50
|
||||||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||||
|
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||||
|
|
||||||
|
# Labels and legend
|
||||||
|
plt.xlabel('Value')
|
||||||
|
plt.ylabel('Frequency')
|
||||||
|
plt.legend(loc='upper right')
|
||||||
|
plt.title('Histograms of Three Lists')
|
||||||
|
|
||||||
|
# Show plot
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# %%
|
||||||
|
# why do similarities of 97% still map correctly?
|
||||||
|
score_array = np.array(similarity_correct_scores)
|
||||||
|
# %%
|
||||||
|
sum(score_array < 0.95)
|
||||||
|
# %%
|
||||||
|
correct_df[score_array < 0.95]['tag_description'].index.to_list()
|
||||||
|
# %%
|
|
@ -5,7 +5,7 @@ Modified by: Richard Wong
|
||||||
# %%
|
# %%
|
||||||
import re
|
import re
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from replacement_dict import desc_replacement_dict, unit_replacement_dict
|
from replacement_dict_new import desc_replacement_dict, unit_replacement_dict
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
def count_abbreviation_occurrences(tag_descriptions, abbreviation):
|
def count_abbreviation_occurrences(tag_descriptions, abbreviation):
|
||||||
|
@ -48,20 +48,23 @@ df = pd.read_csv(file_path)
|
||||||
# %%
|
# %%
|
||||||
# Replace abbreviations
|
# Replace abbreviations
|
||||||
print("running substitution for descriptions")
|
print("running substitution for descriptions")
|
||||||
df['tag_description']= df['tag_description'].fillna("NOVALUE")
|
# normalize to uppercase
|
||||||
|
# strip leading and trailing whitespace
|
||||||
|
df['tag_description'] = df['tag_description'].str.strip()
|
||||||
|
df['tag_description'] = df['tag_description'].str.upper()
|
||||||
# Replace whitespace-only entries with "NOVALUE"
|
# Replace whitespace-only entries with "NOVALUE"
|
||||||
# note that "N/A" can be read as nan
|
# note that "N/A" can be read as nan
|
||||||
# replace whitespace only values as NOVALUE
|
# replace whitespace only values as NOVALUE
|
||||||
|
df['tag_description']= df['tag_description'].fillna("NOVALUE")
|
||||||
df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||||
|
|
||||||
|
# perform actual substitution
|
||||||
tag_descriptions = df['tag_description']
|
tag_descriptions = df['tag_description']
|
||||||
replaced_descriptions = replace_abbreviations(tag_descriptions, desc_replacement_dict)
|
replaced_descriptions = replace_abbreviations(tag_descriptions, desc_replacement_dict)
|
||||||
replaced_descriptions = cleanup_spaces(replaced_descriptions)
|
replaced_descriptions = cleanup_spaces(replaced_descriptions)
|
||||||
replaced_descriptions = cleanup_dots(replaced_descriptions)
|
replaced_descriptions = cleanup_dots(replaced_descriptions)
|
||||||
df["tag_description"] = replaced_descriptions
|
df["tag_description"] = replaced_descriptions
|
||||||
# print("Descriptions after replacement:", replaced_descriptions)
|
# print("Descriptions after replacement:", replaced_descriptions)
|
||||||
# strip trailing whitespace
|
|
||||||
df['tag_description'] = df['tag_description'].str.rstrip()
|
|
||||||
df['tag_description'] = df['tag_description'].str.upper()
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
print("running substitutions for units")
|
print("running substitutions for units")
|
||||||
|
|
|
@ -70,7 +70,8 @@ desc_replacement_dict = {
|
||||||
r'\bD/G\b': 'GENERATOR_ENGINE',
|
r'\bD/G\b': 'GENERATOR_ENGINE',
|
||||||
r'\bGEN\.\b': 'GENERATOR_ENGINE',
|
r'\bGEN\.\b': 'GENERATOR_ENGINE',
|
||||||
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
||||||
r'\b(\d+)MGE\b': r'NO\1 GENERATOR_ENGINE',
|
# MGE?
|
||||||
|
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
|
||||||
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
||||||
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
||||||
r'\bE/R\b': 'ENGINE ROOM',
|
r'\bE/R\b': 'ENGINE ROOM',
|
||||||
|
|
|
@ -0,0 +1,291 @@
|
||||||
|
# substitution mapping for descriptions
|
||||||
|
# Abbreviations and their replacements
|
||||||
|
desc_replacement_dict = {
|
||||||
|
r'\bLIST\b': 'LIST',
|
||||||
|
# exhaust gas
|
||||||
|
r'\bE\. GAS\b': 'EXHAUST GAS',
|
||||||
|
r'\bEXH\.\b': 'EXHAUST',
|
||||||
|
r'\bEXH\b': 'EXHAUST',
|
||||||
|
r'\bEXHAUST\.\b': 'EXHAUST',
|
||||||
|
r'\bEXHAUST\b': 'EXHAUST',
|
||||||
|
r'\bBLR\.EXH\.\b': 'BOILER EXHAUST',
|
||||||
|
# temperature
|
||||||
|
r'\bTEMP\.\b': 'TEMPERATURE',
|
||||||
|
r'\bTEMP\b': 'TEMPERATURE',
|
||||||
|
r'\bTEMPERATURE\.\b': 'TEMPERATURE',
|
||||||
|
r'\bTEMPERATURE\b': 'TEMPERATURE',
|
||||||
|
# cylinder
|
||||||
|
r'\bCYL(\d+)\b': r'CYLINDER\1',
|
||||||
|
r'\bCYL\.(\d+)\b': r'CYLINDER\1',
|
||||||
|
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
|
||||||
|
r'\bCYL\.\b': 'CYLINDER',
|
||||||
|
r'\bCYL\b': 'CYLINDER',
|
||||||
|
# cooling
|
||||||
|
r'\bCOOL\.\b': 'COOLING',
|
||||||
|
r'\bCOOLING\b': 'COOLING',
|
||||||
|
r'\bCOOLER\b': 'COOLER',
|
||||||
|
r'\bCW\b': 'COOLING WATER',
|
||||||
|
r'\bC\.W\b': 'COOLING WATER',
|
||||||
|
r'\bJ\.C\.F\.W\b': 'JACKET COOLING FEED WATER',
|
||||||
|
r'\bJ\.C F\.W\b': 'JACKET COOLING FEED WATER',
|
||||||
|
r'\bJACKET C\.F\.W\b': 'JACKET COOLING FEED WATER',
|
||||||
|
r'\bCOOL\. F\.W\b': 'COOLING FEED WATER',
|
||||||
|
r'\bC\.F\.W\b': 'COOLING FEED WATER',
|
||||||
|
# sea water
|
||||||
|
r'\bC\.S\.W\b': 'COOLING SEA WATER',
|
||||||
|
r'\bCSW\b': 'COOLING SEA WATER',
|
||||||
|
r'\bC.S.W\b': 'COOLING SEA WATER',
|
||||||
|
# water
|
||||||
|
r'\bFEED W\.\b': 'FEED WATER',
|
||||||
|
r'\bFEED W\b': 'FEED WATER',
|
||||||
|
r'\bF\.W\b': 'FEED WATER',
|
||||||
|
r'\bF\.W\.\b': 'FEED WATER',
|
||||||
|
r'\bFW\b': 'FEED WATER',
|
||||||
|
# r'\bWATER\b': 'WATER',
|
||||||
|
r'\bSCAV\.\b': 'SCAVENGE',
|
||||||
|
r'\bSCAV\b': 'SCAVENGE',
|
||||||
|
r'\bINL\.\b': 'INLET',
|
||||||
|
r'\bINLET\b': 'INLET',
|
||||||
|
r'\bOUT\.\b': 'OUTLET',
|
||||||
|
r'\bOUTL\.\b': 'OUTLET',
|
||||||
|
r'\bOUTLET\b': 'OUTLET',
|
||||||
|
# tank
|
||||||
|
r'\bSTOR\.TK\b': 'STORAGE TANK',
|
||||||
|
r'\bSTOR\. TK\b': 'STORAGE TANK',
|
||||||
|
r'\bSERV\. TK\b': 'SERVICE TANK',
|
||||||
|
r'\bSETT\. TK\b': 'SETTLING TANK',
|
||||||
|
r'\bBK\b': 'BUNKER',
|
||||||
|
r'\bTK\b': 'TANK',
|
||||||
|
# PRESSURE
|
||||||
|
r'\bPRESS\b': 'PRESSURE',
|
||||||
|
r'\bPRESS\.\b': 'PRESSURE',
|
||||||
|
r'\bPRESSURE\b': 'PRESSURE',
|
||||||
|
r'PRS\b': 'PRESSURE', # this is a special replacement - it is safe to replace PRS w/o checks
|
||||||
|
# ENGINE
|
||||||
|
r'\bENG\.\b': 'ENGINE',
|
||||||
|
r'\bENG\b': 'ENGINE',
|
||||||
|
r'\bENGINE\b': 'ENGINE',
|
||||||
|
r'\bENGINE SPEED\b': 'ENGINE SPEED',
|
||||||
|
r'\bENGINE RUNNING\b': 'ENGINE RUNNING',
|
||||||
|
r'\bENGINE RPM PICKUP\b': 'ENGINE RPM PICKUP',
|
||||||
|
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
||||||
|
r'\bE/R\b': 'ENGINE ROOM',
|
||||||
|
# MAIN ENGINE
|
||||||
|
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||||
|
r'\bM/E NO(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||||
|
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||||
|
r'\bME NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||||
|
r'\bM/E\b': 'MAIN_ENGINE',
|
||||||
|
r'\bM/E(.)\b': r'MAIN_ENGINE \1', # M/E(S/P)
|
||||||
|
r'\bME(.)\b': r'MAIN_ENGINE \1', # ME(S/P)
|
||||||
|
r'\bM_E\b': 'MAIN_ENGINE',
|
||||||
|
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
|
||||||
|
r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
|
||||||
|
# ENGINE variants
|
||||||
|
r'\bM_E_RPM\b': 'MAIN ENGINE RPM',
|
||||||
|
r'\bM/E_M\.G\.O\.\b': 'MAIN ENGINE MARINE GAS OIL',
|
||||||
|
r'\bM/E_H\.F\.O\.\b': 'MAIN ENGINE HEAVY FUEL OIL',
|
||||||
|
# GENERATOR ENGINE
|
||||||
|
r'\bGEN(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||||
|
r'\bGE(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||||
|
# ensure that we substitute only for terms where following GE is num or special
|
||||||
|
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
|
||||||
|
r'\bG/E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||||
|
r'\bG/E\b': r'GENERATOR_ENGINE',
|
||||||
|
r'\bG_E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||||
|
r'\bG_E\b': 'GENERATOR_ENGINE',
|
||||||
|
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
||||||
|
r'\bG/E_M\.G\.O\b': 'GENERATOR_ENGINE MARINE GAS OIL',
|
||||||
|
# DG
|
||||||
|
r'\bDG(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||||
|
r'\bDG\b': 'GENERATOR_ENGINE',
|
||||||
|
r'\bD/G\b': 'GENERATOR_ENGINE',
|
||||||
|
r'\bDG(\d+)\((.)\)\b': r'NO\1\2 GENERATOR_ENGINE', # handle DG2(A)
|
||||||
|
r'\bDG(\d+[A-Za-z])\b': r'NO\1 GENERATOR_ENGINE', # handle DG2A
|
||||||
|
# DG variants
|
||||||
|
r'\bDG_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
|
||||||
|
r'\bDG_LOAD\b': 'GENERATOR_ENGINE LOAD',
|
||||||
|
r'\bDG_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
|
||||||
|
r'\bDG_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
|
||||||
|
r'\bDG_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
|
||||||
|
r'\bD/G_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
|
||||||
|
r'\bD/G_LOAD\b': 'GENERATOR_ENGINE LOAD',
|
||||||
|
r'\bD/G_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
|
||||||
|
r'\bD/G_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
|
||||||
|
r'\bD/G_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
|
||||||
|
# MGE
|
||||||
|
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
|
||||||
|
# generator engine and mgo
|
||||||
|
r'\bG/E_M\.G\.O\.\b': r'GENERATOR_ENGINE MARINE GAS OIL',
|
||||||
|
r'\bG/E_H\.F\.O\.\b': r'GENERATOR_ENGINE HEAVY FUEL OIL',
|
||||||
|
# ultra low sulfur fuel oil
|
||||||
|
r'\bU\.L\.S\.F\.O\b': 'ULTRA LOW SULFUR FUEL OIL',
|
||||||
|
r'\bULSFO\b': 'ULTRA LOW SULFUR FUEL OIL',
|
||||||
|
# marine gas oil
|
||||||
|
r'\bM\.G\.O\b': 'MARINE GAS OIL',
|
||||||
|
r'\bMGO\b': 'MARINE GAS OIL',
|
||||||
|
r'\bMDO\b': 'MARINE DIESEL OIL',
|
||||||
|
# light fuel oil
|
||||||
|
r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
|
||||||
|
r'\bLFO\b': 'LIGHT FUEL OIL',
|
||||||
|
# heavy fuel oil
|
||||||
|
r'\bHFO\b': 'HEAVY FUEL OIL',
|
||||||
|
r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
|
||||||
|
# piston cooling oil
|
||||||
|
r'\bPCO\b': 'PISTON COOLING OIL',
|
||||||
|
r'\bP\.C\.O\.\b': 'PISTON COOLING OIL',
|
||||||
|
r'\bP\.C\.O\b': 'PISTON COOLING OIL',
|
||||||
|
r'PISTION C.O': 'PISTON COOLING OIL',
|
||||||
|
# diesel oil
|
||||||
|
r'\bD.O\b': 'DIESEL OIL',
|
||||||
|
# for remaining fuel oil that couldn't be substituted
|
||||||
|
r'\bF\.O\b': 'FUEL OIL',
|
||||||
|
r'\bFO\b': 'FUEL OIL',
|
||||||
|
# lubricant
|
||||||
|
r'\bLUB\.\b': 'LUBRICANT',
|
||||||
|
r'\bLUBE\b': 'LUBRICANT',
|
||||||
|
r'\bLUBR\.\b': 'LUBRICANT',
|
||||||
|
r'\bLUBRICATING\.\b': 'LUBRICANT',
|
||||||
|
r'\bLUBRICATION\.\b': 'LUBRICANT',
|
||||||
|
# lubricating oil
|
||||||
|
r'\bL\.O\b': 'LUBRICATING OIL',
|
||||||
|
r'\bLO\b': 'LUBRICATING OIL',
|
||||||
|
# lubricating oil pressure
|
||||||
|
r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
|
||||||
|
r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
|
||||||
|
# temperature
|
||||||
|
r'\bL\.T\b': 'LOW TEMPERATURE',
|
||||||
|
r'\bLT\b': 'LOW TEMPERATURE',
|
||||||
|
r'\bH\.T\b': 'HIGH TEMPERATURE',
|
||||||
|
r'\bHT\b': 'HIGH TEMPERATURE',
|
||||||
|
# BOILER
|
||||||
|
# auxiliary boiler
|
||||||
|
# replace these first before replacing AUXILIARY only
|
||||||
|
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
|
||||||
|
r'\bAUX\. BOILER\b': 'AUXILIARY BOILER',
|
||||||
|
r'\bAUX BLR\b': 'AUXILIARY BOILER',
|
||||||
|
r'\bAUX\.\b': 'AUXILIARY',
|
||||||
|
r'\bAUX\b': 'AUXILIARY',
|
||||||
|
# composite boiler
|
||||||
|
r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
|
||||||
|
r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
|
||||||
|
r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
|
||||||
|
r'\bCOMP\b': 'COMPOSITE',
|
||||||
|
r'\bCMPS\b': 'COMPOSITE',
|
||||||
|
# any other boiler
|
||||||
|
r'\bBLR\.\b': 'BOILER',
|
||||||
|
r'\bBLR\b': 'BOILER',
|
||||||
|
r'\bBOILER W.CIRC.P/P\b': 'BOILER WATER CIRC P/P',
|
||||||
|
# windind
|
||||||
|
r'\bWIND\.\b': 'WINDING',
|
||||||
|
r'\bWINDING\b': 'WINDING',
|
||||||
|
# VOLTAGE/FREQ/CURRENT
|
||||||
|
r'\bVLOT\.': 'VOLTAGE', # correct spelling
|
||||||
|
r'\bVOLT\.': 'VOLTAGE',
|
||||||
|
r'\bVOLTAGE\b': 'VOLTAGE',
|
||||||
|
r'\bFREQ\.': 'FREQUENCY',
|
||||||
|
r'\bFREQUENCY\b': 'FREQUENCY',
|
||||||
|
r'\bCURR\.': 'CURRENT',
|
||||||
|
r'\bCURRENT\b': 'CURRENT',
|
||||||
|
# TURBOCHARGER
|
||||||
|
r'\bTCA\b': 'TURBOCHARGER',
|
||||||
|
r'\bTCB\b': 'TURBOCHARGER',
|
||||||
|
r'\bT/C\b': 'TURBOCHARGER',
|
||||||
|
r'\bT_C\b': 'TURBOCHARGER',
|
||||||
|
r'\bT/C_RPM\b': 'TURBOCHARGER RPM',
|
||||||
|
r'\bTC(\d+)\b': r'TURBOCHARGER\1',
|
||||||
|
r'\bT/C(\d+)\b': r'TURBOCHARGER\1',
|
||||||
|
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
|
||||||
|
r'\bTURBOCHAGER\b': 'TURBOCHARGER',
|
||||||
|
r'\bTURBOCHARGER\b': 'TURBOCHARGER',
|
||||||
|
r'\bTURBOCHG\b': 'TURBOCHARGER',
|
||||||
|
# misc spelling errors
|
||||||
|
r'\bOPERATOIN\b': 'OPERATION',
|
||||||
|
# wrongly attached terms
|
||||||
|
r'\bBOILERMGO\b': 'BOILER MGO',
|
||||||
|
# additional standardizing replacement
|
||||||
|
# replace # followed by a number with NO
|
||||||
|
r'#(?=\d)\b': 'NO',
|
||||||
|
r'\bNO\.(?=\d)\b': 'NO',
|
||||||
|
r'\bNO\.\.(?=\d)\b': 'NO',
|
||||||
|
# others:
|
||||||
|
# generator
|
||||||
|
r'\bGEN\.\b': 'GENERATOR',
|
||||||
|
# others
|
||||||
|
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
||||||
|
r'\bFLTR\b': 'FILTER',
|
||||||
|
r'\bCLR\b': 'CLEAR',
|
||||||
|
}
|
||||||
|
|
||||||
|
# substitution mapping for units
|
||||||
|
# Abbreviations and their replacements
|
||||||
|
unit_replacement_dict = {
|
||||||
|
r'\b%\b': 'PERCENT',
|
||||||
|
r'\b-\b': '',
|
||||||
|
r'\b- \b': '',
|
||||||
|
# ensure no character after A
|
||||||
|
r'\bA(?!\w|/)': 'CURRENT',
|
||||||
|
r'\bAmp(?!\w|/)': 'CURRENT',
|
||||||
|
r'\bHz\b': 'HERTZ',
|
||||||
|
r'\bKG/CM2\b': 'PRESSURE',
|
||||||
|
r'\bKG/H\b': 'KILOGRAM PER HOUR',
|
||||||
|
r'\bKNm\b': 'RPM',
|
||||||
|
r'\bKW\b': 'POWER',
|
||||||
|
r'\bKg(?!\w|/)': 'MASS',
|
||||||
|
r'\bKw\b': 'POWER',
|
||||||
|
r'\bL(?!\w|/)': 'VOLUME',
|
||||||
|
r'\bMT/h\b': 'METRIC TONNES PER HOUR',
|
||||||
|
r'\bMpa\b': 'PRESSURE',
|
||||||
|
r'\bPF\b': 'POWER FACTOR',
|
||||||
|
r'\bRPM\b': 'RPM',
|
||||||
|
r'\bV(?!\w|/)': 'VOLTAGE',
|
||||||
|
r'\bbar(?!\w|/)': 'PRESSURE',
|
||||||
|
r'\bbarA\b': 'SCAVENGE PRESSURE',
|
||||||
|
r'\bcST\b': 'VISCOSITY',
|
||||||
|
r'\bcSt\b': 'VISCOSITY',
|
||||||
|
r'\bcst\b': 'VISCOSITY',
|
||||||
|
r'\bdeg(?!\w|/|\.)': 'DEGREE',
|
||||||
|
r'\bdeg.C\b': 'TEMPERATURE',
|
||||||
|
r'\bdegC\b': 'TEMPERATURE',
|
||||||
|
r'\bdegree\b': 'DEGREE',
|
||||||
|
r'\bdegreeC\b': 'TEMPERATURE',
|
||||||
|
r'\bhPa\b': 'PRESSURE',
|
||||||
|
r'\bhours\b': 'HOURS',
|
||||||
|
r'\bkN\b': 'THRUST',
|
||||||
|
r'\bkNm\b': 'TORQUE',
|
||||||
|
r'\bkW\b': 'POWER',
|
||||||
|
# ensure that kg is not followed by anything
|
||||||
|
r'\bkg(?!\w|/)': 'FLOW', # somehow in the data its flow
|
||||||
|
r'\bkg/P\b': 'MASS FLOW',
|
||||||
|
r'\bkg/cm2\b': 'PRESSURE',
|
||||||
|
r'\bkg/cm²\b': 'PRESSURE',
|
||||||
|
r'\bkg/h\b': 'MASS FLOW',
|
||||||
|
r'\bkg/hr\b': 'MASS FLOW',
|
||||||
|
r'\bkg/pulse\b': '',
|
||||||
|
r'\bkgf/cm2\b': 'PRESSURE',
|
||||||
|
r'\bkgf/cm²\b': 'PRESSURE',
|
||||||
|
r'\bkgf/㎠\b': 'PRESSURE',
|
||||||
|
r'\bknots\b': 'SPEED',
|
||||||
|
r'\bkw\b': 'POWER',
|
||||||
|
r'\bl/Hr\b': 'VOLUME FLOW',
|
||||||
|
r'\bl/h\b': 'VOLUME FLOW',
|
||||||
|
r'\bl_Hr\b': 'VOLUME FLOW',
|
||||||
|
r'\bl_hr\b': 'VOLUME FLOW',
|
||||||
|
r'\bM\b': 'DRAFT', # for wind draft
|
||||||
|
r'm': 'm', # wind draft and trim - not useful
|
||||||
|
r'\bm/s\b': 'SPEED',
|
||||||
|
r'\bm3\b': 'VOLUME',
|
||||||
|
r'\bmH2O\b': 'DRAFT',
|
||||||
|
r'\bmWC\b': 'DRAFT',
|
||||||
|
r'\bmbar\b': 'PRESSURE',
|
||||||
|
r'\bmg\b': 'ACCELERATION',
|
||||||
|
r'\bmin-¹\b': '', # data too varied
|
||||||
|
r'\bmm\b': '', # data too varied
|
||||||
|
r'\bmmH2O\b': 'WATER DRUM LEVEL',
|
||||||
|
r'\brev\b': 'RPM',
|
||||||
|
r'\brpm\b': 'RPM',
|
||||||
|
r'\bx1000min-¹\b': '',
|
||||||
|
r'\b°C\b': 'TEMPERATURE',
|
||||||
|
r'\bºC\b': 'TEMPERATURE',
|
||||||
|
r'\b℃\b': 'TEMPERATURE'
|
||||||
|
}
|
|
@ -0,0 +1 @@
|
||||||
|
*.csv
|
|
@ -53,6 +53,17 @@ with open('output.txt', 'w') as file:
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
test = 'kg/cm3'
|
test = 'M/E(S) something'
|
||||||
print(re.sub(r'kg(?!\w|/)', 'flow', test))
|
print(re.sub(r'\bM/E(.)', r'MAINE ENGINE \1', test))
|
||||||
# %%
|
# %%
|
||||||
|
test = 'NO.345A ENGINE'
|
||||||
|
print(re.sub(r'\bNO\.(?=\d)\b', r'NO', test))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
test = 'S/G VLOT.'
|
||||||
|
print(re.sub(r'VLOT\.', 'VOLT', test))
|
||||||
|
# %%
|
||||||
|
description = 'NO3 GENERATOR WINDING TEMPERATURE(T)'
|
||||||
|
re.sub(r'\s+', ' ', description)
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,31 +1,31 @@
|
||||||
|
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Accuracy: 0.95342
|
Accuracy: 0.95174
|
||||||
F1 Score: 0.91344
|
F1 Score: 0.90912
|
||||||
Precision: 0.91643
|
Precision: 0.91788
|
||||||
Recall: 0.91052
|
Recall: 0.90092
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Accuracy: 0.95402
|
Accuracy: 0.95159
|
||||||
F1 Score: 0.92950
|
F1 Score: 0.92593
|
||||||
Precision: 0.92122
|
Precision: 0.91697
|
||||||
Recall: 0.93848
|
Recall: 0.93574
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Accuracy: 0.95200
|
Accuracy: 0.95373
|
||||||
F1 Score: 0.92726
|
F1 Score: 0.93021
|
||||||
Precision: 0.91825
|
Precision: 0.91935
|
||||||
Recall: 0.93712
|
Recall: 0.94233
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Accuracy: 0.96473
|
Accuracy: 0.96524
|
||||||
F1 Score: 0.92708
|
F1 Score: 0.92902
|
||||||
Precision: 0.91566
|
Precision: 0.91306
|
||||||
Recall: 0.93950
|
Recall: 0.94702
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Accuracy: 0.95605
|
Accuracy: 0.95643
|
||||||
F1 Score: 0.92244
|
F1 Score: 0.92319
|
||||||
Precision: 0.91755
|
Precision: 0.91793
|
||||||
Recall: 0.92754
|
Recall: 0.92869
|
||||||
|
|
|
@ -98,7 +98,7 @@ def test(fold):
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
max_length = 64
|
max_length = 128
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
# given a dataset entry, run it through the tokenizer
|
||||||
def preprocess_function(example):
|
def preprocess_function(example):
|
||||||
|
|
|
@ -74,6 +74,15 @@ def create_split_dataset(fold):
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||||
|
|
||||||
|
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||||
|
|
||||||
|
train_ships_set = set(train_ships_list)
|
||||||
|
test_ships_set = set(ships_list)
|
||||||
|
|
||||||
|
# assertion for non data leakage
|
||||||
|
assert not set(train_ships_set).intersection(test_ships_set)
|
||||||
|
|
||||||
|
|
||||||
# valid
|
# valid
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
|
@ -0,0 +1,31 @@
|
||||||
|
|
||||||
|
Fold: 1
|
||||||
|
Best threshold: 0.9775
|
||||||
|
Accuracy: 0.92512
|
||||||
|
F1 Score: 0.76313
|
||||||
|
Precision: 0.78069
|
||||||
|
Recall: 0.74633
|
||||||
|
Fold: 2
|
||||||
|
Best threshold: 0.9775
|
||||||
|
Accuracy: 0.92054
|
||||||
|
F1 Score: 0.81117
|
||||||
|
Precision: 0.77150
|
||||||
|
Recall: 0.85514
|
||||||
|
Fold: 3
|
||||||
|
Best threshold: 0.985
|
||||||
|
Accuracy: 0.93201
|
||||||
|
F1 Score: 0.83578
|
||||||
|
Precision: 0.81657
|
||||||
|
Recall: 0.85592
|
||||||
|
Fold: 4
|
||||||
|
Best threshold: 0.9924999999999999
|
||||||
|
Accuracy: 0.95334
|
||||||
|
F1 Score: 0.82722
|
||||||
|
Precision: 0.83341
|
||||||
|
Recall: 0.82112
|
||||||
|
Fold: 5
|
||||||
|
Best threshold: 0.9924999999999999
|
||||||
|
Accuracy: 0.92968
|
||||||
|
F1 Score: 0.77680
|
||||||
|
Precision: 0.83395
|
||||||
|
Recall: 0.72698
|
|
@ -50,7 +50,8 @@ class Embedder():
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
element = f"{desc}{unit}"
|
name = f"<NAME>{row['tag_name']}<NAME"
|
||||||
|
element = f"{name}{desc}{unit}"
|
||||||
input_list.append(element)
|
input_list.append(element)
|
||||||
return input_list
|
return input_list
|
||||||
|
|
||||||
|
@ -64,7 +65,7 @@ class Embedder():
|
||||||
|
|
||||||
|
|
||||||
def run_similarity_classifier(fold):
|
def run_similarity_classifier(fold):
|
||||||
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
|
||||||
|
@ -72,7 +73,7 @@ def run_similarity_classifier(fold):
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
checkpoint_directory = "../../train/classification_bert_complete_desc_unit_name"
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
# Use glob to find matching paths
|
# Use glob to find matching paths
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
@ -109,26 +110,54 @@ def run_similarity_classifier(fold):
|
||||||
sim_list.append(top_sim_value)
|
sim_list.append(top_sim_value)
|
||||||
|
|
||||||
# analysis 1: using threshold to perform find-back prediction success
|
# analysis 1: using threshold to perform find-back prediction success
|
||||||
threshold = 0.90
|
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||||
predict_list = [ elem > threshold for elem in sim_list ]
|
best_threshold = 0
|
||||||
|
best_f1 = 0
|
||||||
|
for threshold in threshold_values:
|
||||||
|
predict_list = [ elem > threshold for elem in sim_list ]
|
||||||
|
|
||||||
|
y_true = test_df['MDM'].to_list()
|
||||||
|
y_pred = predict_list
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred)
|
||||||
|
precision = precision_score(y_true, y_pred)
|
||||||
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
if f1 > best_f1:
|
||||||
|
best_threshold = threshold
|
||||||
|
best_f1 = f1
|
||||||
|
|
||||||
|
# compute metrics again with best threshold
|
||||||
|
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||||
y_true = test_df['MDM'].to_list()
|
y_true = test_df['MDM'].to_list()
|
||||||
y_pred = predict_list
|
y_pred = predict_list
|
||||||
|
|
||||||
# Compute metrics
|
# Compute metrics
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
f1 = f1_score(y_true, y_pred)
|
f1 = f1_score(y_true, y_pred)
|
||||||
precision = precision_score(y_true, y_pred)
|
precision = precision_score(y_true, y_pred)
|
||||||
recall = recall_score(y_true, y_pred)
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
# Print the results
|
|
||||||
print(f'Accuracy: {accuracy:.5f}')
|
|
||||||
print(f'F1 Score: {f1:.5f}')
|
with open("output.txt", "a") as f:
|
||||||
print(f'Precision: {precision:.5f}')
|
|
||||||
print(f'Recall: {recall:.5f}')
|
print(f'Fold: {fold}', file=f)
|
||||||
|
print(f'Best threshold: {best_threshold}', file=f)
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||||
|
print(f'F1 Score: {f1:.5f}', file=f)
|
||||||
|
print(f'Precision: {precision:.5f}', file=f)
|
||||||
|
print(f'Recall: {recall:.5f}', file=f)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(fold)
|
||||||
run_similarity_classifier(fold)
|
run_similarity_classifier(fold)
|
||||||
|
|
|
@ -1,31 +1,31 @@
|
||||||
|
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Accuracy: 0.76337
|
Accuracy: 0.78277
|
||||||
F1 Score: 0.37980
|
F1 Score: 0.73629
|
||||||
Precision: 0.36508
|
Precision: 0.71419
|
||||||
Recall: 0.41523
|
Recall: 0.78277
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Accuracy: 0.77430
|
Accuracy: 0.78598
|
||||||
F1 Score: 0.40473
|
F1 Score: 0.73708
|
||||||
Precision: 0.39528
|
Precision: 0.71578
|
||||||
Recall: 0.43303
|
Recall: 0.78598
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Accuracy: 0.77259
|
Accuracy: 0.79819
|
||||||
F1 Score: 0.39538
|
F1 Score: 0.74411
|
||||||
Precision: 0.37761
|
Precision: 0.71749
|
||||||
Recall: 0.43633
|
Recall: 0.79819
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Accuracy: 0.77545
|
Accuracy: 0.79543
|
||||||
F1 Score: 0.39792
|
F1 Score: 0.73902
|
||||||
Precision: 0.38636
|
Precision: 0.71094
|
||||||
Recall: 0.43003
|
Recall: 0.79543
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Accuracy: 0.74897
|
Accuracy: 0.77279
|
||||||
F1 Score: 0.38827
|
F1 Score: 0.72098
|
||||||
Precision: 0.37680
|
Precision: 0.69817
|
||||||
Recall: 0.42382
|
Recall: 0.77279
|
||||||
|
|
|
@ -27,6 +27,9 @@ from tqdm import tqdm
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
|
||||||
|
BATCH_SIZE = 256
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
# we need to create the mdm_list
|
# we need to create the mdm_list
|
||||||
|
@ -185,7 +188,6 @@ def test(fold):
|
||||||
actual_labels = []
|
actual_labels = []
|
||||||
|
|
||||||
|
|
||||||
BATCH_SIZE = 64
|
|
||||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||||
for batch in tqdm(dataloader):
|
for batch in tqdm(dataloader):
|
||||||
# Inference in batches
|
# Inference in batches
|
||||||
|
@ -217,9 +219,11 @@ def test(fold):
|
||||||
|
|
||||||
# Compute metrics
|
# Compute metrics
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
f1 = f1_score(y_true, y_pred, average='macro')
|
average_parameter = 'weighted'
|
||||||
precision = precision_score(y_true, y_pred, average='macro')
|
zero_division_parameter = 0
|
||||||
recall = recall_score(y_true, y_pred, average='macro')
|
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
with open("output.txt", "a") as f:
|
||||||
|
|
||||||
|
|
|
@ -57,7 +57,7 @@ for idx, val in enumerate(mdm_list):
|
||||||
def process_df_to_dict(df, mdm_list):
|
def process_df_to_dict(df, mdm_list):
|
||||||
output_list = []
|
output_list = []
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
desc = f"{row['tag_description']}"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
pattern = f"{row['thing'] + row['property']}"
|
pattern = f"{row['thing'] + row['property']}"
|
||||||
try:
|
try:
|
||||||
index = mdm_list.index(pattern)
|
index = mdm_list.index(pattern)
|
||||||
|
@ -100,7 +100,7 @@ def train(fold):
|
||||||
# prepare tokenizer
|
# prepare tokenizer
|
||||||
|
|
||||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
model_checkpoint = 'google-bert/bert-base-cased'
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
# Define additional special tokens
|
# Define additional special tokens
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
@ -177,8 +177,8 @@ def train(fold):
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-5,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
|
|
@ -1,31 +1,31 @@
|
||||||
|
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Accuracy: 0.77946
|
Accuracy: 0.78940
|
||||||
F1 Score: 0.40686
|
F1 Score: 0.73284
|
||||||
Precision: 0.39833
|
Precision: 0.70389
|
||||||
Recall: 0.43814
|
Recall: 0.78940
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Accuracy: 0.78271
|
Accuracy: 0.78411
|
||||||
F1 Score: 0.42730
|
F1 Score: 0.73695
|
||||||
Precision: 0.42002
|
Precision: 0.71914
|
||||||
Recall: 0.45670
|
Recall: 0.78411
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Accuracy: 0.78715
|
Accuracy: 0.80522
|
||||||
F1 Score: 0.41108
|
F1 Score: 0.75406
|
||||||
Precision: 0.39829
|
Precision: 0.72847
|
||||||
Recall: 0.44992
|
Recall: 0.80522
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Accuracy: 0.79115
|
Accuracy: 0.80780
|
||||||
F1 Score: 0.41810
|
F1 Score: 0.75361
|
||||||
Precision: 0.40095
|
Precision: 0.72432
|
||||||
Recall: 0.45760
|
Recall: 0.80780
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Accuracy: 0.76271
|
Accuracy: 0.76958
|
||||||
F1 Score: 0.41752
|
F1 Score: 0.71912
|
||||||
Precision: 0.41156
|
Precision: 0.69965
|
||||||
Recall: 0.44899
|
Recall: 0.76958
|
||||||
|
|
|
@ -27,6 +27,9 @@ from tqdm import tqdm
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
|
||||||
|
BATCH_SIZE = 128
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
# we need to create the mdm_list
|
# we need to create the mdm_list
|
||||||
|
@ -123,7 +126,7 @@ def test(fold):
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
max_length = 64
|
max_length = 128
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
# given a dataset entry, run it through the tokenizer
|
||||||
def preprocess_function(example):
|
def preprocess_function(example):
|
||||||
|
@ -185,7 +188,6 @@ def test(fold):
|
||||||
actual_labels = []
|
actual_labels = []
|
||||||
|
|
||||||
|
|
||||||
BATCH_SIZE = 64
|
|
||||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||||
for batch in tqdm(dataloader):
|
for batch in tqdm(dataloader):
|
||||||
# Inference in batches
|
# Inference in batches
|
||||||
|
@ -217,9 +219,13 @@ def test(fold):
|
||||||
|
|
||||||
# Compute metrics
|
# Compute metrics
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
f1 = f1_score(y_true, y_pred, average='macro')
|
average_parameter = 'weighted'
|
||||||
precision = precision_score(y_true, y_pred, average='macro')
|
zero_division_parameter = 0
|
||||||
recall = recall_score(y_true, y_pred, average='macro')
|
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
with open("output.txt", "a") as f:
|
||||||
|
|
||||||
|
|
|
@ -57,9 +57,9 @@ for idx, val in enumerate(mdm_list):
|
||||||
def process_df_to_dict(df, mdm_list):
|
def process_df_to_dict(df, mdm_list):
|
||||||
output_list = []
|
output_list = []
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
desc = f"{row['tag_description']}"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
pattern = f"{row['thing'] + row['property']}"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
pattern = f"{row['thing'] + row['property']}"
|
||||||
try:
|
try:
|
||||||
index = mdm_list.index(pattern)
|
index = mdm_list.index(pattern)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
|
@ -101,7 +101,7 @@ def train(fold):
|
||||||
# prepare tokenizer
|
# prepare tokenizer
|
||||||
|
|
||||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
model_checkpoint = 'google-bert/bert-base-cased'
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
# Define additional special tokens
|
# Define additional special tokens
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
@ -178,8 +178,8 @@ def train(fold):
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-5,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
checkpoint*
|
||||||
|
tensorboard-log
|
|
@ -0,0 +1,31 @@
|
||||||
|
|
||||||
|
********************************************************************************
|
||||||
|
Fold: 1
|
||||||
|
Accuracy: 0.68859
|
||||||
|
F1 Score: 0.62592
|
||||||
|
Precision: 0.60775
|
||||||
|
Recall: 0.68859
|
||||||
|
********************************************************************************
|
||||||
|
Fold: 2
|
||||||
|
Accuracy: 0.72150
|
||||||
|
F1 Score: 0.65739
|
||||||
|
Precision: 0.63652
|
||||||
|
Recall: 0.72150
|
||||||
|
********************************************************************************
|
||||||
|
Fold: 3
|
||||||
|
Accuracy: 0.72038
|
||||||
|
F1 Score: 0.65781
|
||||||
|
Precision: 0.63249
|
||||||
|
Recall: 0.72038
|
||||||
|
********************************************************************************
|
||||||
|
Fold: 4
|
||||||
|
Accuracy: 0.74167
|
||||||
|
F1 Score: 0.68167
|
||||||
|
Precision: 0.65489
|
||||||
|
Recall: 0.74167
|
||||||
|
********************************************************************************
|
||||||
|
Fold: 5
|
||||||
|
Accuracy: 0.67705
|
||||||
|
F1 Score: 0.61273
|
||||||
|
Precision: 0.59472
|
||||||
|
Recall: 0.67705
|
|
@ -0,0 +1,248 @@
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# from datasets import load_from_disk
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
|
||||||
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||||
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||||
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from transformers import (
|
||||||
|
AutoTokenizer,
|
||||||
|
AutoModelForSequenceClassification,
|
||||||
|
DataCollatorWithPadding,
|
||||||
|
)
|
||||||
|
import evaluate
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
|
||||||
|
BATCH_SIZE = 256
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# we need to create the mdm_list
|
||||||
|
# import the full mdm-only file
|
||||||
|
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
|
||||||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# rather than use pattern, we use the real thing and property
|
||||||
|
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||||
|
thing_property = full_df['thing'] + full_df['property']
|
||||||
|
thing_property = thing_property.to_list()
|
||||||
|
mdm_list = sorted(list(set(thing_property)))
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
id2label = {}
|
||||||
|
label2id = {}
|
||||||
|
for idx, val in enumerate(mdm_list):
|
||||||
|
id2label[idx] = val
|
||||||
|
label2id[val] = idx
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
# processes dataframe into lists of dictionaries
|
||||||
|
# each element maps input to output
|
||||||
|
# input: tag_description
|
||||||
|
# output: class label
|
||||||
|
def process_df_to_dict(df, mdm_list):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
|
||||||
|
pattern = f"{row['thing'] + row['property']}"
|
||||||
|
try:
|
||||||
|
index = mdm_list.index(pattern)
|
||||||
|
except ValueError:
|
||||||
|
index = -1
|
||||||
|
element = {
|
||||||
|
'text' : f"{name}{desc}{unit}",
|
||||||
|
'label': index,
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset(fold, mdm_list):
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# we only use the mdm subset
|
||||||
|
test_df = test_df[test_df['MDM']].reset_index(drop=True)
|
||||||
|
|
||||||
|
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
|
||||||
|
|
||||||
|
return test_dataset
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# function to perform training for a given fold
|
||||||
|
def test(fold):
|
||||||
|
|
||||||
|
test_dataset = create_dataset(fold, mdm_list)
|
||||||
|
|
||||||
|
# prepare tokenizer
|
||||||
|
|
||||||
|
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute max token length
|
||||||
|
max_length = 0
|
||||||
|
for sample in test_dataset['text']:
|
||||||
|
# Tokenize the sample and get the length
|
||||||
|
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||||
|
length = len(input_ids)
|
||||||
|
|
||||||
|
# Update max_length if this sample is longer
|
||||||
|
if length > max_length:
|
||||||
|
max_length = length
|
||||||
|
|
||||||
|
print(max_length)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
max_length = 128
|
||||||
|
|
||||||
|
# given a dataset entry, run it through the tokenizer
|
||||||
|
def preprocess_function(example):
|
||||||
|
input = example['text']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = tokenizer(
|
||||||
|
input,
|
||||||
|
max_length=max_length,
|
||||||
|
# truncation=True,
|
||||||
|
padding='max_length'
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
datasets = test_dataset.map(
|
||||||
|
preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=8,
|
||||||
|
remove_columns="text",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||||
|
|
||||||
|
# %% temp
|
||||||
|
# tokenized_datasets['train'].rename_columns()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# create data collator
|
||||||
|
|
||||||
|
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute metrics
|
||||||
|
# metric = evaluate.load("accuracy")
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def compute_metrics(eval_preds):
|
||||||
|
# preds, labels = eval_preds
|
||||||
|
# preds = np.argmax(preds, axis=1)
|
||||||
|
# return metric.compute(predictions=preds, references=labels)
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(
|
||||||
|
model_checkpoint,
|
||||||
|
num_labels=len(mdm_list),
|
||||||
|
id2label=id2label,
|
||||||
|
label2id=label2id)
|
||||||
|
# important! after extending tokens vocab
|
||||||
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
|
||||||
|
model = model.eval()
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
pred_labels = []
|
||||||
|
actual_labels = []
|
||||||
|
|
||||||
|
|
||||||
|
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||||
|
for batch in tqdm(dataloader):
|
||||||
|
# Inference in batches
|
||||||
|
input_ids = batch['input_ids']
|
||||||
|
attention_mask = batch['attention_mask']
|
||||||
|
# save labels too
|
||||||
|
actual_labels.extend(batch['label'])
|
||||||
|
|
||||||
|
|
||||||
|
# Move to GPU if available
|
||||||
|
input_ids = input_ids.to(device)
|
||||||
|
attention_mask = attention_mask.to(device)
|
||||||
|
|
||||||
|
# Perform inference
|
||||||
|
with torch.no_grad():
|
||||||
|
logits = model(
|
||||||
|
input_ids,
|
||||||
|
attention_mask).logits
|
||||||
|
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||||
|
pred_labels.extend(predicted_class_ids)
|
||||||
|
|
||||||
|
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||||
|
y_true = actual_labels
|
||||||
|
y_pred = pred_labels
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
average_parameter = 'weighted'
|
||||||
|
zero_division_parameter = 0
|
||||||
|
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open("output.txt", "a") as f:
|
||||||
|
|
||||||
|
print('*' * 80, file=f)
|
||||||
|
print(f'Fold: {fold}', file=f)
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||||
|
print(f'F1 Score: {f1:.5f}', file=f)
|
||||||
|
print(f'Precision: {precision:.5f}', file=f)
|
||||||
|
print(f'Recall: {recall:.5f}', file=f)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
test(fold)
|
|
@ -0,0 +1,218 @@
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# from datasets import load_from_disk
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||||
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||||
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers import (
|
||||||
|
AutoTokenizer,
|
||||||
|
AutoModelForSequenceClassification,
|
||||||
|
DataCollatorWithPadding,
|
||||||
|
Trainer,
|
||||||
|
EarlyStoppingCallback,
|
||||||
|
TrainingArguments
|
||||||
|
)
|
||||||
|
import evaluate
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# we need to create the mdm_list
|
||||||
|
# import the full mdm-only file
|
||||||
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# rather than use pattern, we use the real thing and property
|
||||||
|
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||||
|
thing_property = full_df['thing'] + full_df['property']
|
||||||
|
thing_property = thing_property.to_list()
|
||||||
|
mdm_list = sorted(list(set(thing_property)))
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
id2label = {}
|
||||||
|
label2id = {}
|
||||||
|
for idx, val in enumerate(mdm_list):
|
||||||
|
id2label[idx] = val
|
||||||
|
label2id[val] = idx
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
# processes dataframe into lists of dictionaries
|
||||||
|
# each element maps input to output
|
||||||
|
# input: tag_description
|
||||||
|
# output: class label
|
||||||
|
def process_df_to_dict(df, mdm_list):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
pattern = f"{row['thing'] + row['property']}"
|
||||||
|
try:
|
||||||
|
index = mdm_list.index(pattern)
|
||||||
|
except ValueError:
|
||||||
|
print("Error: value not found in MDM list")
|
||||||
|
index = -1
|
||||||
|
element = {
|
||||||
|
'text' : f"{name}{desc}{unit}",
|
||||||
|
'label': index,
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
|
||||||
|
def create_split_dataset(fold, mdm_list):
|
||||||
|
# train
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# valid
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||||
|
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
combined_data = DatasetDict({
|
||||||
|
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||||
|
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||||
|
})
|
||||||
|
return combined_data
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# function to perform training for a given fold
|
||||||
|
def train(fold):
|
||||||
|
|
||||||
|
save_path = f'checkpoint_fold_{fold}'
|
||||||
|
split_datasets = create_split_dataset(fold, mdm_list)
|
||||||
|
|
||||||
|
# prepare tokenizer
|
||||||
|
|
||||||
|
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||||
|
model_checkpoint = 'google-bert/bert-base-cased'
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
max_length = 120
|
||||||
|
|
||||||
|
# given a dataset entry, run it through the tokenizer
|
||||||
|
def preprocess_function(example):
|
||||||
|
input = example['text']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = tokenizer(
|
||||||
|
input,
|
||||||
|
max_length=max_length,
|
||||||
|
truncation=True,
|
||||||
|
padding=True
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
tokenized_datasets = split_datasets.map(
|
||||||
|
preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=8,
|
||||||
|
remove_columns="text",
|
||||||
|
)
|
||||||
|
|
||||||
|
# %% temp
|
||||||
|
# tokenized_datasets['train'].rename_columns()
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# create data collator
|
||||||
|
|
||||||
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# compute metrics
|
||||||
|
metric = evaluate.load("accuracy")
|
||||||
|
|
||||||
|
|
||||||
|
def compute_metrics(eval_preds):
|
||||||
|
preds, labels = eval_preds
|
||||||
|
preds = np.argmax(preds, axis=1)
|
||||||
|
return metric.compute(predictions=preds, references=labels)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# create id2label and label2id
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(
|
||||||
|
model_checkpoint,
|
||||||
|
num_labels=len(mdm_list),
|
||||||
|
id2label=id2label,
|
||||||
|
label2id=label2id)
|
||||||
|
# important! after extending tokens vocab
|
||||||
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
|
||||||
|
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# Trainer
|
||||||
|
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir=f"{save_path}",
|
||||||
|
# eval_strategy="epoch",
|
||||||
|
eval_strategy="no",
|
||||||
|
logging_dir="tensorboard-log",
|
||||||
|
logging_strategy="epoch",
|
||||||
|
# save_strategy="epoch",
|
||||||
|
load_best_model_at_end=False,
|
||||||
|
learning_rate=1e-5,
|
||||||
|
per_device_train_batch_size=128,
|
||||||
|
per_device_eval_batch_size=128,
|
||||||
|
auto_find_batch_size=False,
|
||||||
|
ddp_find_unused_parameters=False,
|
||||||
|
weight_decay=0.01,
|
||||||
|
save_total_limit=1,
|
||||||
|
num_train_epochs=80,
|
||||||
|
bf16=True,
|
||||||
|
push_to_hub=False,
|
||||||
|
remove_unused_columns=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
trainer = Trainer(
|
||||||
|
model,
|
||||||
|
training_args,
|
||||||
|
train_dataset=tokenized_datasets["train"],
|
||||||
|
eval_dataset=tokenized_datasets["validation"],
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
data_collator=data_collator,
|
||||||
|
compute_metrics=compute_metrics,
|
||||||
|
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||||
|
)
|
||||||
|
|
||||||
|
# uncomment to load training from checkpoint
|
||||||
|
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||||
|
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# execute training
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(fold)
|
||||||
|
train(fold)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
|
@ -52,7 +52,7 @@ for idx, val in enumerate(mdm_list):
|
||||||
def process_df_to_dict(df, mdm_list):
|
def process_df_to_dict(df, mdm_list):
|
||||||
output_list = []
|
output_list = []
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
desc = f"{row['tag_description']}"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
pattern = row['pattern']
|
pattern = row['pattern']
|
||||||
try:
|
try:
|
||||||
index = mdm_list.index(pattern)
|
index = mdm_list.index(pattern)
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
checkpoint*
|
||||||
|
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
||||||
|
__pycache__
|
||||||
|
exports/
|
|
@ -0,0 +1,168 @@
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from transformers import (
|
||||||
|
T5TokenizerFast,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
)
|
||||||
|
import os
|
||||||
|
from tqdm import tqdm
|
||||||
|
from datasets import Dataset
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||||
|
|
||||||
|
|
||||||
|
class Inference():
|
||||||
|
tokenizer: T5TokenizerFast
|
||||||
|
model: torch.nn.Module
|
||||||
|
dataloader: DataLoader
|
||||||
|
|
||||||
|
def __init__(self, checkpoint_path):
|
||||||
|
self._create_tokenizer()
|
||||||
|
self._load_model(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
def _create_tokenizer(self):
|
||||||
|
# %%
|
||||||
|
# load tokenizer
|
||||||
|
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
def _load_model(self, checkpoint_path: str):
|
||||||
|
# load model
|
||||||
|
# Define the directory and the pattern
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||||
|
model = torch.compile(model)
|
||||||
|
# set model to eval
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||||
|
"""
|
||||||
|
*arguments*
|
||||||
|
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||||
|
- batch_size: the batch size of dataloader output
|
||||||
|
- max_length: length of tokenizer output
|
||||||
|
"""
|
||||||
|
print("preparing dataloader")
|
||||||
|
# convert each dataframe row into a dictionary
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
|
||||||
|
def _process_df(df):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
element = {
|
||||||
|
'input' : f"{desc}{unit}",
|
||||||
|
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
def _preprocess_function(example):
|
||||||
|
input = example['input']
|
||||||
|
target = example['output']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = self.tokenizer(
|
||||||
|
input,
|
||||||
|
text_target=target,
|
||||||
|
max_length=max_length,
|
||||||
|
return_tensors="pt",
|
||||||
|
padding='max_length',
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||||
|
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
datasets = test_dataset.map(
|
||||||
|
_preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=1,
|
||||||
|
remove_columns=test_dataset.column_names,
|
||||||
|
)
|
||||||
|
# datasets = _preprocess_function(test_dataset)
|
||||||
|
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||||
|
|
||||||
|
# create dataloader
|
||||||
|
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||||
|
|
||||||
|
|
||||||
|
def generate(self):
|
||||||
|
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||||
|
MAX_GENERATE_LENGTH = 128
|
||||||
|
|
||||||
|
pred_generations = []
|
||||||
|
pred_labels = []
|
||||||
|
|
||||||
|
print("start generation")
|
||||||
|
for batch in tqdm(self.dataloader):
|
||||||
|
# Inference in batches
|
||||||
|
input_ids = batch['input_ids']
|
||||||
|
attention_mask = batch['attention_mask']
|
||||||
|
# save labels too
|
||||||
|
pred_labels.extend(batch['labels'])
|
||||||
|
|
||||||
|
|
||||||
|
# Move to GPU if available
|
||||||
|
input_ids = input_ids.to(device)
|
||||||
|
attention_mask = attention_mask.to(device)
|
||||||
|
self.model.to(device)
|
||||||
|
|
||||||
|
# Perform inference
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
max_length=MAX_GENERATE_LENGTH)
|
||||||
|
|
||||||
|
# Decode the output and print the results
|
||||||
|
pred_generations.extend(outputs.to("cpu"))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# extract sequence and decode
|
||||||
|
def extract_seq(tokens, start_value, end_value):
|
||||||
|
if start_value not in tokens or end_value not in tokens:
|
||||||
|
return None # Or handle this case according to your requirements
|
||||||
|
start_id = np.where(tokens == start_value)[0][0]
|
||||||
|
end_id = np.where(tokens == end_value)[0][0]
|
||||||
|
|
||||||
|
return tokens[start_id+1:end_id]
|
||||||
|
|
||||||
|
|
||||||
|
def process_tensor_output(tokens):
|
||||||
|
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||||
|
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||||
|
p_thing = None
|
||||||
|
p_property = None
|
||||||
|
if (thing_seq is not None):
|
||||||
|
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||||
|
if (property_seq is not None):
|
||||||
|
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||||
|
return p_thing, p_property
|
||||||
|
|
||||||
|
# decode prediction labels
|
||||||
|
def decode_preds(tokens_list):
|
||||||
|
thing_prediction_list = []
|
||||||
|
property_prediction_list = []
|
||||||
|
for tokens in tokens_list:
|
||||||
|
p_thing, p_property = process_tensor_output(tokens)
|
||||||
|
thing_prediction_list.append(p_thing)
|
||||||
|
property_prediction_list.append(p_property)
|
||||||
|
return thing_prediction_list, property_prediction_list
|
||||||
|
|
||||||
|
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||||
|
return thing_prediction_list, property_prediction_list
|
||||||
|
|
|
@ -0,0 +1,6 @@
|
||||||
|
|
||||||
|
Accuracy for fold 1: 0.9455750118315192
|
||||||
|
Accuracy for fold 2: 0.8864485981308411
|
||||||
|
Accuracy for fold 3: 0.9558232931726908
|
||||||
|
Accuracy for fold 4: 0.9686013320647003
|
||||||
|
Accuracy for fold 5: 0.896930829134219
|
|
@ -0,0 +1,6 @@
|
||||||
|
|
||||||
|
Accuracy for fold 1: 0.9588263132986276
|
||||||
|
Accuracy for fold 2: 0.9182242990654206
|
||||||
|
Accuracy for fold 3: 0.9633534136546185
|
||||||
|
Accuracy for fold 4: 0.9809705042816366
|
||||||
|
Accuracy for fold 5: 0.8891433806688044
|
|
@ -0,0 +1,73 @@
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from inference import Inference
|
||||||
|
|
||||||
|
checkpoint_directory = '../'
|
||||||
|
|
||||||
|
BATCH_SIZE = 512
|
||||||
|
|
||||||
|
def infer_and_select(fold):
|
||||||
|
print(f"Inference for fold {fold}")
|
||||||
|
# import test data
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# get target data
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# processing to help with selection later
|
||||||
|
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||||
|
|
||||||
|
|
||||||
|
##########################################
|
||||||
|
# run inference
|
||||||
|
# checkpoint
|
||||||
|
# Use glob to find matching paths
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
|
||||||
|
infer = Inference(checkpoint_path)
|
||||||
|
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||||
|
thing_prediction_list, property_prediction_list = infer.generate()
|
||||||
|
|
||||||
|
# add labels too
|
||||||
|
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||||
|
# Convert the list to a Pandas DataFrame
|
||||||
|
df_out = pd.DataFrame({
|
||||||
|
'p_thing': thing_prediction_list,
|
||||||
|
'p_property': property_prediction_list
|
||||||
|
})
|
||||||
|
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||||
|
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||||
|
df = pd.concat([df, df_out], axis=1)
|
||||||
|
|
||||||
|
# we can save the t5 generation output here
|
||||||
|
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||||
|
|
||||||
|
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||||
|
in_mdm = df['MDM']
|
||||||
|
condition_correct_thing = df['p_thing'] == df['thing']
|
||||||
|
condition_correct_property = df['p_property'] == df['property']
|
||||||
|
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||||
|
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||||
|
|
||||||
|
# write output to file output.txt
|
||||||
|
with open("output.txt", "a") as f:
|
||||||
|
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Execute for all folds
|
||||||
|
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
infer_and_select(fold)
|
|
@ -0,0 +1,196 @@
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# from datasets import load_from_disk
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||||
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||||
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers import (
|
||||||
|
T5TokenizerFast,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
DataCollatorForSeq2Seq,
|
||||||
|
Seq2SeqTrainer,
|
||||||
|
EarlyStoppingCallback,
|
||||||
|
Seq2SeqTrainingArguments
|
||||||
|
)
|
||||||
|
import evaluate
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
def process_df_to_dict(df):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
element = {
|
||||||
|
'input' : f"{desc}",
|
||||||
|
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
|
||||||
|
def create_split_dataset(fold):
|
||||||
|
# train
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# valid
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||||
|
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
combined_data = DatasetDict({
|
||||||
|
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||||
|
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||||
|
})
|
||||||
|
return combined_data
|
||||||
|
|
||||||
|
|
||||||
|
# function to perform training for a given fold
|
||||||
|
def train(fold):
|
||||||
|
save_path = f'checkpoint_fold_{fold}'
|
||||||
|
split_datasets = create_split_dataset(fold)
|
||||||
|
|
||||||
|
# prepare tokenizer
|
||||||
|
|
||||||
|
model_checkpoint = "t5-small"
|
||||||
|
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
max_length = 120
|
||||||
|
|
||||||
|
# given a dataset entry, run it through the tokenizer
|
||||||
|
def preprocess_function(example):
|
||||||
|
input = example['input']
|
||||||
|
target = example['output']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = tokenizer(
|
||||||
|
input,
|
||||||
|
text_target=target,
|
||||||
|
max_length=max_length,
|
||||||
|
truncation=True,
|
||||||
|
padding=True
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
tokenized_datasets = split_datasets.map(
|
||||||
|
preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=8,
|
||||||
|
remove_columns=split_datasets["train"].column_names,
|
||||||
|
)
|
||||||
|
|
||||||
|
# https://github.com/huggingface/transformers/pull/28414
|
||||||
|
# model_checkpoint = "google/t5-efficient-tiny"
|
||||||
|
# device_map set to auto to force it to load contiguous weights
|
||||||
|
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||||
|
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||||
|
# important! after extending tokens vocab
|
||||||
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||||
|
metric = evaluate.load("sacrebleu")
|
||||||
|
|
||||||
|
|
||||||
|
def compute_metrics(eval_preds):
|
||||||
|
preds, labels = eval_preds
|
||||||
|
# In case the model returns more than the prediction logits
|
||||||
|
if isinstance(preds, tuple):
|
||||||
|
preds = preds[0]
|
||||||
|
|
||||||
|
decoded_preds = tokenizer.batch_decode(preds,
|
||||||
|
skip_special_tokens=False)
|
||||||
|
|
||||||
|
# Replace -100s in the labels as we can't decode them
|
||||||
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||||
|
decoded_labels = tokenizer.batch_decode(labels,
|
||||||
|
skip_special_tokens=False)
|
||||||
|
|
||||||
|
# Remove <PAD> tokens from decoded predictions and labels
|
||||||
|
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||||
|
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||||
|
|
||||||
|
# Some simple post-processing
|
||||||
|
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||||
|
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||||
|
# print(decoded_preds, decoded_labels)
|
||||||
|
|
||||||
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||||
|
return {"bleu": result["score"]}
|
||||||
|
|
||||||
|
|
||||||
|
# Generation Config
|
||||||
|
# from transformers import GenerationConfig
|
||||||
|
gen_config = model.generation_config
|
||||||
|
gen_config.max_length = 64
|
||||||
|
|
||||||
|
# compile
|
||||||
|
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||||
|
|
||||||
|
|
||||||
|
# Trainer
|
||||||
|
|
||||||
|
args = Seq2SeqTrainingArguments(
|
||||||
|
f"{save_path}",
|
||||||
|
# eval_strategy="epoch",
|
||||||
|
eval_strategy="no",
|
||||||
|
logging_dir="tensorboard-log",
|
||||||
|
logging_strategy="epoch",
|
||||||
|
# save_strategy="epoch",
|
||||||
|
load_best_model_at_end=False,
|
||||||
|
learning_rate=1e-3,
|
||||||
|
per_device_train_batch_size=128,
|
||||||
|
per_device_eval_batch_size=128,
|
||||||
|
auto_find_batch_size=False,
|
||||||
|
ddp_find_unused_parameters=False,
|
||||||
|
weight_decay=0.01,
|
||||||
|
save_total_limit=1,
|
||||||
|
num_train_epochs=40,
|
||||||
|
predict_with_generate=True,
|
||||||
|
bf16=True,
|
||||||
|
push_to_hub=False,
|
||||||
|
generation_config=gen_config,
|
||||||
|
remove_unused_columns=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
trainer = Seq2SeqTrainer(
|
||||||
|
model,
|
||||||
|
args,
|
||||||
|
train_dataset=tokenized_datasets["train"],
|
||||||
|
eval_dataset=tokenized_datasets["validation"],
|
||||||
|
data_collator=data_collator,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
compute_metrics=compute_metrics,
|
||||||
|
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||||
|
)
|
||||||
|
|
||||||
|
# uncomment to load training from checkpoint
|
||||||
|
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||||
|
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# execute training
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(fold)
|
||||||
|
train(fold)
|
||||||
|
|
|
@ -0,0 +1,6 @@
|
||||||
|
|
||||||
|
Accuracy for fold 1: 0.9522006625650734
|
||||||
|
Accuracy for fold 2: 0.9093457943925234
|
||||||
|
Accuracy for fold 3: 0.9678714859437751
|
||||||
|
Accuracy for fold 4: 0.9814462416745956
|
||||||
|
Accuracy for fold 5: 0.890975721484196
|
|
@ -6,6 +6,8 @@ from inference import Inference
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
checkpoint_directory = '../'
|
||||||
|
|
||||||
|
BATCH_SIZE = 512
|
||||||
|
|
||||||
def infer_and_select(fold):
|
def infer_and_select(fold):
|
||||||
print(f"Inference for fold {fold}")
|
print(f"Inference for fold {fold}")
|
||||||
# import test data
|
# import test data
|
||||||
|
@ -32,7 +34,7 @@ def infer_and_select(fold):
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
infer = Inference(checkpoint_path)
|
||||||
infer.prepare_dataloader(df, batch_size=256, max_length=128)
|
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
thing_prediction_list, property_prediction_list = infer.generate()
|
||||||
|
|
||||||
# add labels too
|
# add labels too
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
checkpoint*
|
||||||
|
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
||||||
|
__pycache__
|
||||||
|
exports/
|
|
@ -0,0 +1,169 @@
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from transformers import (
|
||||||
|
T5TokenizerFast,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
)
|
||||||
|
import os
|
||||||
|
from tqdm import tqdm
|
||||||
|
from datasets import Dataset
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||||
|
|
||||||
|
|
||||||
|
class Inference():
|
||||||
|
tokenizer: T5TokenizerFast
|
||||||
|
model: torch.nn.Module
|
||||||
|
dataloader: DataLoader
|
||||||
|
|
||||||
|
def __init__(self, checkpoint_path):
|
||||||
|
self._create_tokenizer()
|
||||||
|
self._load_model(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
def _create_tokenizer(self):
|
||||||
|
# %%
|
||||||
|
# load tokenizer
|
||||||
|
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
def _load_model(self, checkpoint_path: str):
|
||||||
|
# load model
|
||||||
|
# Define the directory and the pattern
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||||
|
model = torch.compile(model)
|
||||||
|
# set model to eval
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||||
|
"""
|
||||||
|
*arguments*
|
||||||
|
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||||
|
- batch_size: the batch size of dataloader output
|
||||||
|
- max_length: length of tokenizer output
|
||||||
|
"""
|
||||||
|
print("preparing dataloader")
|
||||||
|
# convert each dataframe row into a dictionary
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
|
||||||
|
def _process_df(df):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
element = {
|
||||||
|
'input' : f"{name}{desc}{unit}",
|
||||||
|
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
def _preprocess_function(example):
|
||||||
|
input = example['input']
|
||||||
|
target = example['output']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = self.tokenizer(
|
||||||
|
input,
|
||||||
|
text_target=target,
|
||||||
|
max_length=max_length,
|
||||||
|
return_tensors="pt",
|
||||||
|
padding='max_length',
|
||||||
|
truncation=True,
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||||
|
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
datasets = test_dataset.map(
|
||||||
|
_preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=1,
|
||||||
|
remove_columns=test_dataset.column_names,
|
||||||
|
)
|
||||||
|
# datasets = _preprocess_function(test_dataset)
|
||||||
|
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||||
|
|
||||||
|
# create dataloader
|
||||||
|
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||||
|
|
||||||
|
|
||||||
|
def generate(self):
|
||||||
|
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||||
|
MAX_GENERATE_LENGTH = 128
|
||||||
|
|
||||||
|
pred_generations = []
|
||||||
|
pred_labels = []
|
||||||
|
|
||||||
|
print("start generation")
|
||||||
|
for batch in tqdm(self.dataloader):
|
||||||
|
# Inference in batches
|
||||||
|
input_ids = batch['input_ids']
|
||||||
|
attention_mask = batch['attention_mask']
|
||||||
|
# save labels too
|
||||||
|
pred_labels.extend(batch['labels'])
|
||||||
|
|
||||||
|
|
||||||
|
# Move to GPU if available
|
||||||
|
input_ids = input_ids.to(device)
|
||||||
|
attention_mask = attention_mask.to(device)
|
||||||
|
self.model.to(device)
|
||||||
|
|
||||||
|
# Perform inference
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
max_length=MAX_GENERATE_LENGTH)
|
||||||
|
|
||||||
|
# Decode the output and print the results
|
||||||
|
pred_generations.extend(outputs.to("cpu"))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# extract sequence and decode
|
||||||
|
def extract_seq(tokens, start_value, end_value):
|
||||||
|
if start_value not in tokens or end_value not in tokens:
|
||||||
|
return None # Or handle this case according to your requirements
|
||||||
|
start_id = np.where(tokens == start_value)[0][0]
|
||||||
|
end_id = np.where(tokens == end_value)[0][0]
|
||||||
|
|
||||||
|
return tokens[start_id+1:end_id]
|
||||||
|
|
||||||
|
|
||||||
|
def process_tensor_output(tokens):
|
||||||
|
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||||
|
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||||
|
p_thing = None
|
||||||
|
p_property = None
|
||||||
|
if (thing_seq is not None):
|
||||||
|
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||||
|
if (property_seq is not None):
|
||||||
|
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||||
|
return p_thing, p_property
|
||||||
|
|
||||||
|
# decode prediction labels
|
||||||
|
def decode_preds(tokens_list):
|
||||||
|
thing_prediction_list = []
|
||||||
|
property_prediction_list = []
|
||||||
|
for tokens in tokens_list:
|
||||||
|
p_thing, p_property = process_tensor_output(tokens)
|
||||||
|
thing_prediction_list.append(p_thing)
|
||||||
|
property_prediction_list.append(p_property)
|
||||||
|
return thing_prediction_list, property_prediction_list
|
||||||
|
|
||||||
|
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||||
|
return thing_prediction_list, property_prediction_list
|
||||||
|
|
|
@ -0,0 +1,6 @@
|
||||||
|
|
||||||
|
Accuracy for fold 1: 0.9465215333648841
|
||||||
|
Accuracy for fold 2: 0.9102803738317757
|
||||||
|
Accuracy for fold 3: 0.9728915662650602
|
||||||
|
Accuracy for fold 4: 0.9843006660323501
|
||||||
|
Accuracy for fold 5: 0.8996793403573065
|
|
@ -0,0 +1,73 @@
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from inference import Inference
|
||||||
|
|
||||||
|
checkpoint_directory = '../'
|
||||||
|
|
||||||
|
BATCH_SIZE = 512
|
||||||
|
|
||||||
|
def infer_and_select(fold):
|
||||||
|
print(f"Inference for fold {fold}")
|
||||||
|
# import test data
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# get target data
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# processing to help with selection later
|
||||||
|
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||||
|
|
||||||
|
|
||||||
|
##########################################
|
||||||
|
# run inference
|
||||||
|
# checkpoint
|
||||||
|
# Use glob to find matching paths
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
|
||||||
|
infer = Inference(checkpoint_path)
|
||||||
|
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||||
|
thing_prediction_list, property_prediction_list = infer.generate()
|
||||||
|
|
||||||
|
# add labels too
|
||||||
|
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||||
|
# Convert the list to a Pandas DataFrame
|
||||||
|
df_out = pd.DataFrame({
|
||||||
|
'p_thing': thing_prediction_list,
|
||||||
|
'p_property': property_prediction_list
|
||||||
|
})
|
||||||
|
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||||
|
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||||
|
df = pd.concat([df, df_out], axis=1)
|
||||||
|
|
||||||
|
# we can save the t5 generation output here
|
||||||
|
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||||
|
|
||||||
|
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||||
|
in_mdm = df['MDM']
|
||||||
|
condition_correct_thing = df['p_thing'] == df['thing']
|
||||||
|
condition_correct_property = df['p_property'] == df['property']
|
||||||
|
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||||
|
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||||
|
|
||||||
|
# write output to file output.txt
|
||||||
|
with open("output.txt", "a") as f:
|
||||||
|
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Execute for all folds
|
||||||
|
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
infer_and_select(fold)
|
|
@ -0,0 +1,198 @@
|
||||||
|
# %%
|
||||||
|
|
||||||
|
# from datasets import load_from_disk
|
||||||
|
import os
|
||||||
|
|
||||||
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||||
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||||
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from transformers import (
|
||||||
|
T5TokenizerFast,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
DataCollatorForSeq2Seq,
|
||||||
|
Seq2SeqTrainer,
|
||||||
|
EarlyStoppingCallback,
|
||||||
|
Seq2SeqTrainingArguments
|
||||||
|
)
|
||||||
|
import evaluate
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
# import matplotlib.pyplot as plt
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
# outputs a list of dictionaries
|
||||||
|
def process_df_to_dict(df):
|
||||||
|
output_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
element = {
|
||||||
|
'input' : f"{name}{desc}{unit}",
|
||||||
|
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||||
|
}
|
||||||
|
output_list.append(element)
|
||||||
|
|
||||||
|
return output_list
|
||||||
|
|
||||||
|
|
||||||
|
def create_split_dataset(fold):
|
||||||
|
# train
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# valid
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||||
|
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
combined_data = DatasetDict({
|
||||||
|
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||||
|
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||||
|
})
|
||||||
|
return combined_data
|
||||||
|
|
||||||
|
|
||||||
|
# function to perform training for a given fold
|
||||||
|
def train(fold):
|
||||||
|
save_path = f'checkpoint_fold_{fold}'
|
||||||
|
split_datasets = create_split_dataset(fold)
|
||||||
|
|
||||||
|
# prepare tokenizer
|
||||||
|
|
||||||
|
model_checkpoint = "t5-small"
|
||||||
|
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# Define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# Add the additional special tokens to the tokenizer
|
||||||
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
max_length = 120
|
||||||
|
|
||||||
|
# given a dataset entry, run it through the tokenizer
|
||||||
|
def preprocess_function(example):
|
||||||
|
input = example['input']
|
||||||
|
target = example['output']
|
||||||
|
# text_target sets the corresponding label to inputs
|
||||||
|
# there is no need to create a separate 'labels'
|
||||||
|
model_inputs = tokenizer(
|
||||||
|
input,
|
||||||
|
text_target=target,
|
||||||
|
max_length=max_length,
|
||||||
|
truncation=True,
|
||||||
|
padding=True
|
||||||
|
)
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
|
# map maps function to each "row" in the dataset
|
||||||
|
# aka the data in the immediate nesting
|
||||||
|
tokenized_datasets = split_datasets.map(
|
||||||
|
preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
num_proc=8,
|
||||||
|
remove_columns=split_datasets["train"].column_names,
|
||||||
|
)
|
||||||
|
|
||||||
|
# https://github.com/huggingface/transformers/pull/28414
|
||||||
|
# model_checkpoint = "google/t5-efficient-tiny"
|
||||||
|
# device_map set to auto to force it to load contiguous weights
|
||||||
|
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||||
|
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||||
|
# important! after extending tokens vocab
|
||||||
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
|
|
||||||
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||||
|
metric = evaluate.load("sacrebleu")
|
||||||
|
|
||||||
|
|
||||||
|
def compute_metrics(eval_preds):
|
||||||
|
preds, labels = eval_preds
|
||||||
|
# In case the model returns more than the prediction logits
|
||||||
|
if isinstance(preds, tuple):
|
||||||
|
preds = preds[0]
|
||||||
|
|
||||||
|
decoded_preds = tokenizer.batch_decode(preds,
|
||||||
|
skip_special_tokens=False)
|
||||||
|
|
||||||
|
# Replace -100s in the labels as we can't decode them
|
||||||
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||||
|
decoded_labels = tokenizer.batch_decode(labels,
|
||||||
|
skip_special_tokens=False)
|
||||||
|
|
||||||
|
# Remove <PAD> tokens from decoded predictions and labels
|
||||||
|
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||||
|
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||||
|
|
||||||
|
# Some simple post-processing
|
||||||
|
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||||
|
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||||
|
# print(decoded_preds, decoded_labels)
|
||||||
|
|
||||||
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||||
|
return {"bleu": result["score"]}
|
||||||
|
|
||||||
|
|
||||||
|
# Generation Config
|
||||||
|
# from transformers import GenerationConfig
|
||||||
|
gen_config = model.generation_config
|
||||||
|
gen_config.max_length = 64
|
||||||
|
|
||||||
|
# compile
|
||||||
|
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||||
|
|
||||||
|
|
||||||
|
# Trainer
|
||||||
|
|
||||||
|
args = Seq2SeqTrainingArguments(
|
||||||
|
f"{save_path}",
|
||||||
|
# eval_strategy="epoch",
|
||||||
|
eval_strategy="no",
|
||||||
|
logging_dir="tensorboard-log",
|
||||||
|
logging_strategy="epoch",
|
||||||
|
# save_strategy="epoch",
|
||||||
|
load_best_model_at_end=False,
|
||||||
|
learning_rate=1e-3,
|
||||||
|
per_device_train_batch_size=128,
|
||||||
|
per_device_eval_batch_size=128,
|
||||||
|
auto_find_batch_size=False,
|
||||||
|
ddp_find_unused_parameters=False,
|
||||||
|
weight_decay=0.01,
|
||||||
|
save_total_limit=1,
|
||||||
|
num_train_epochs=40,
|
||||||
|
predict_with_generate=True,
|
||||||
|
bf16=True,
|
||||||
|
push_to_hub=False,
|
||||||
|
generation_config=gen_config,
|
||||||
|
remove_unused_columns=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
trainer = Seq2SeqTrainer(
|
||||||
|
model,
|
||||||
|
args,
|
||||||
|
train_dataset=tokenized_datasets["train"],
|
||||||
|
eval_dataset=tokenized_datasets["validation"],
|
||||||
|
data_collator=data_collator,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
compute_metrics=compute_metrics,
|
||||||
|
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||||
|
)
|
||||||
|
|
||||||
|
# uncomment to load training from checkpoint
|
||||||
|
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||||
|
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# execute training
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(fold)
|
||||||
|
train(fold)
|
||||||
|
|
|
@ -0,0 +1,27 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
cd classification_bert_complete_desc/classification_prediction/
|
||||||
|
micromamba run -n hug python predict.py
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
cd classification_bert_complete_desc_unit/classification_prediction/
|
||||||
|
micromamba run -n hug python predict.py
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
cd classification_bert_complete_desc_unit_name/classification_prediction/
|
||||||
|
micromamba run -n hug python predict.py
|
||||||
|
cd ../..
|
||||||
|
|
||||||
|
# cd mapping_t5_complete_desc/mapping_prediction/
|
||||||
|
# micromamba run -n hug python predict.py
|
||||||
|
# cd ../..
|
||||||
|
#
|
||||||
|
# cd mapping_t5_complete_desc_unit/mapping_prediction/
|
||||||
|
# micromamba run -n hug python predict.py
|
||||||
|
# cd ../..
|
||||||
|
#
|
||||||
|
# cd mapping_t5_complete_desc_unit_name/mapping_prediction/
|
||||||
|
# micromamba run -n hug python predict.py
|
||||||
|
# cd ../..
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,25 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# cd classification_bert_complete_desc
|
||||||
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
# cd ..
|
||||||
|
#
|
||||||
|
# cd classification_bert_complete_desc_unit
|
||||||
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
# cd ..
|
||||||
|
|
||||||
|
cd classification_bert_complete_desc_unit_name
|
||||||
|
micromamba run -n hug accelerate launch train.py
|
||||||
|
cd ..
|
||||||
|
|
||||||
|
# cd mapping_t5_complete_desc
|
||||||
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
# cd ..
|
||||||
|
#
|
||||||
|
# cd mapping_t5_complete_desc_unit
|
||||||
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
# cd ..
|
||||||
|
#
|
||||||
|
# cd mapping_t5_complete_name_desc_unit
|
||||||
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
# cd ..
|
Loading…
Reference in New Issue