Chore: re-organized train folders to have standardized naming schemes
Feat: introduced BERT-based binary classification
This commit is contained in:
parent
96e7394c59
commit
1f3970459f
|
@ -8,5 +8,11 @@ mdm_list = sorted(list((set(full_df['pattern']))))
|
|||
|
||||
|
||||
# %%
|
||||
mdm_list
|
||||
len(mdm_list)
|
||||
# %%
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
tp_list = sorted(list(set(thing_property)))
|
||||
# %%
|
||||
len(tp_list)
|
||||
# %%
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# %%
|
||||
data_path = '../../data_import/exports/raw_data.csv'
|
||||
df = pd.read_csv(data_path)
|
||||
|
||||
# %%
|
||||
df
|
||||
|
||||
# %%
|
||||
set(df['signal_type'])
|
||||
# %%
|
|
@ -0,0 +1,15 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# %%
|
||||
data_path = '../../data_import/exports/raw_data.csv'
|
||||
df = pd.read_csv(data_path)
|
||||
|
||||
# %%
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# %%
|
||||
set(df['pattern'])
|
||||
# %%
|
||||
set(df[df['pattern'] == 'GeneratorEngine# Power']['tag_description'].to_list())
|
||||
# %%
|
|
@ -1,106 +1,106 @@
|
|||
# substitution mapping for descriptions
|
||||
# Abbreviations and their replacements
|
||||
desc_replacement_dict = {
|
||||
r'\bLIST\b\b': 'LIST',
|
||||
r'\bList\b\b': 'LIST',
|
||||
r'\bLIST\b': 'LIST',
|
||||
r'\bList\b': 'LIST',
|
||||
r'\bEXH\.\b': 'EXHAUST',
|
||||
r'\bEXH\b\b': 'EXHAUST',
|
||||
r'\bEXH\b': 'EXHAUST',
|
||||
r'\bEXHAUST\.\b': 'EXHAUST',
|
||||
r'\bExhaust\b\b': 'EXHAUST',
|
||||
r'\bEXHAUST\b\b': 'EXHAUST',
|
||||
r'\bExhaust\b': 'EXHAUST',
|
||||
r'\bEXHAUST\b': 'EXHAUST',
|
||||
r'\bTEMP\.\b': 'TEMPERATURE',
|
||||
r'\bTEMP\b\b': 'TEMPERATURE',
|
||||
r'\bTEMP\b': 'TEMPERATURE',
|
||||
r'\bTEMPERATURE\.\b': 'TEMPERATURE',
|
||||
r'\bTEMPERATURE\b\b': 'TEMPERATURE',
|
||||
r'\bTEMPERATURE\b': 'TEMPERATURE',
|
||||
r'\bW\.\b': 'WATER',
|
||||
r'\bWATER\b\b': 'WATER',
|
||||
r'\bCW\b\b': 'COOLING WATER',
|
||||
r'\bWATER\b': 'WATER',
|
||||
r'\bCW\b': 'COOLING WATER',
|
||||
r'\bCYL\.\b': 'CYLINDER',
|
||||
r'\bCyl\b\b': 'CYLINDER',
|
||||
r'\bCyl\b': 'CYLINDER',
|
||||
r'\bcyl\.\b': 'CYLINDER',
|
||||
r'\bCYL\b\b': 'CYLINDER',
|
||||
r'\bCYL\b': 'CYLINDER',
|
||||
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
|
||||
r'\bcylinder\b\b': 'CYLINDER',
|
||||
r'\bCYLINDER\b\b': 'CYLINDER',
|
||||
r'\bcylinder\b': 'CYLINDER',
|
||||
r'\bCYLINDER\b': 'CYLINDER',
|
||||
r'\bCOOL\.\b': 'COOLING',
|
||||
r'\bcool\.\b': 'COOLING',
|
||||
r'\bcooling\b\b': 'COOLING',
|
||||
r'\bCOOLING\b\b': 'COOLING',
|
||||
r'\bcooler\b\b': 'COOLER',
|
||||
r'\bCOOLER\b\b': 'COOLER',
|
||||
r'\bcooling\b': 'COOLING',
|
||||
r'\bCOOLING\b': 'COOLING',
|
||||
r'\bcooler\b': 'COOLER',
|
||||
r'\bCOOLER\b': 'COOLER',
|
||||
r'\bScav\.\b': 'SCAVENGE',
|
||||
r'\bSCAV\.\b': 'SCAVENGE',
|
||||
r'\bINL\.\b': 'INLET',
|
||||
r'\binlet\b\b': 'INLET',
|
||||
r'\bINLET\b\b': 'INLET',
|
||||
r'\binlet\b': 'INLET',
|
||||
r'\bINLET\b': 'INLET',
|
||||
r'\bOUT\.\b': 'OUTLET',
|
||||
r'\bOUTL\.\b': 'OUTLET',
|
||||
r'\boutlet\b\b': 'OUTLET',
|
||||
r'\bOUTLET\b\b': 'OUTLET',
|
||||
r'\boutlet\b': 'OUTLET',
|
||||
r'\bOUTLET\b': 'OUTLET',
|
||||
# bunker tank
|
||||
r'\bBK\b': 'BUNKER',
|
||||
r'\bTK\b': 'TANK',
|
||||
# pressure
|
||||
r'\bPRESS\b\b': 'PRESSURE',
|
||||
r'\bPRESS\b': 'PRESSURE',
|
||||
r'\bPRESS\.\b': 'PRESSURE',
|
||||
r'\bPress\.\b': 'PRESSURE',
|
||||
r'\bpressure\b\b': 'PRESSURE',
|
||||
r'\bPRESSURE\b\b': 'PRESSURE',
|
||||
r'\bpressure\b': 'PRESSURE',
|
||||
r'\bPRESSURE\b': 'PRESSURE',
|
||||
# this is a special replacement - it is safe to replace PRS w/o checks
|
||||
r'PRS\b': 'PRESSURE',
|
||||
r'\bCLR\b\b': 'CLEAR',
|
||||
r'\bCLR\b': 'CLEAR',
|
||||
r'\bENG\.\b': 'ENGINE',
|
||||
r'\bENG\b\b': 'ENGINE',
|
||||
r'\bENGINE\b\b': 'ENGINE',
|
||||
r'\bEngine speed\b\b': 'ENGINE SPEED',
|
||||
r'\bEngine running\b\b': 'ENGINE RUNNING',
|
||||
r'\bEngine RPM pickup\b\b': 'ENGINE RPM PICKUP',
|
||||
r'\bEngine room\b\b': 'ENGINE ROOM',
|
||||
r'\bENG\b': 'ENGINE',
|
||||
r'\bENGINE\b': 'ENGINE',
|
||||
r'\bEngine speed\b': 'ENGINE SPEED',
|
||||
r'\bEngine running\b': 'ENGINE RUNNING',
|
||||
r'\bEngine RPM pickup\b': 'ENGINE RPM PICKUP',
|
||||
r'\bEngine room\b': 'ENGINE ROOM',
|
||||
# main engine
|
||||
r'\bM/E\b': 'MAIN_ENGINE',
|
||||
r'\bM_E\b': 'MAIN_ENGINE',
|
||||
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
|
||||
r'\bMAIN ENGINE\b\b': 'MAIN_ENGINE',
|
||||
r'\bGen\b\b': 'GENERATOR_ENGINE',
|
||||
r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
|
||||
r'\bGen\b': 'GENERATOR_ENGINE',
|
||||
# ensure that we substitute only for terms where following GE is num or special
|
||||
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
|
||||
r'\bG/E\b': 'GENERATOR_ENGINE',
|
||||
r'\bG_E\b': 'GENERATOR_ENGINE',
|
||||
r'\bDG\b': 'GENERATOR_ENGINE',
|
||||
r'\bD/G\b\b': 'GENERATOR_ENGINE',
|
||||
r'\bD/G\b': 'GENERATOR_ENGINE',
|
||||
r'\bGEN\.\b': 'GENERATOR_ENGINE',
|
||||
r'\bGENERATOR ENGINE\B\b': 'GENERATOR_ENGINE',
|
||||
r'\b(\d+)MGE\b\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bGEN\.WIND\.TEMP\b\b': 'GENERATOR WINDING TEMPERATURE',
|
||||
r'\bENGINE ROOM\b\b': 'ENGINE ROOM',
|
||||
r'\bE/R\b\b': 'ENGINE ROOM',
|
||||
r'\bFLTR\b\b': 'FILTER',
|
||||
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
||||
r'\b(\d+)MGE\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
||||
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
||||
r'\bE/R\b': 'ENGINE ROOM',
|
||||
r'\bFLTR\b': 'FILTER',
|
||||
# marine gas oil
|
||||
r'\bM\.G\.O\b\b': 'MARINE GAS OIL',
|
||||
r'\bMGO\b\b': 'MARINE GAS OIL',
|
||||
r'\bMDO\b\b': 'MARINE DIESEL OIL',
|
||||
r'\bM\.G\.O\b': 'MARINE GAS OIL',
|
||||
r'\bMGO\b': 'MARINE GAS OIL',
|
||||
r'\bMDO\b': 'MARINE DIESEL OIL',
|
||||
# light fuel oil
|
||||
r'\bL\.F\.O\b\b': 'LIGHT FUEL OIL',
|
||||
r'\bLFO\b\b': 'LIGHT FUEL OIL',
|
||||
r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
|
||||
r'\bLFO\b': 'LIGHT FUEL OIL',
|
||||
# heavy fuel oil
|
||||
r'\bHFO\b\b': 'HEAVY FUEL OIL',
|
||||
r'\bH\.F\.O\b\b': 'HEAVY FUEL OIL',
|
||||
r'\bHFO\b': 'HEAVY FUEL OIL',
|
||||
r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
|
||||
# for remaining fuel oil that couldn't be substituted
|
||||
r'\bF\.O\b\b': 'FUEL OIL',
|
||||
r'\bFO\b\b': 'FUEL OIL',
|
||||
r'\bF\.O\b': 'FUEL OIL',
|
||||
r'\bFO\b': 'FUEL OIL',
|
||||
# lubricant
|
||||
r'\bLUB\.\b': 'LUBRICANT',
|
||||
# lubricating oil
|
||||
r'\bL\.O\b\b': 'LUBRICATING OIL',
|
||||
r'\bLO\b\b': 'LUBRICATING OIL',
|
||||
r'\bL\.O\b': 'LUBRICATING OIL',
|
||||
r'\bLO\b': 'LUBRICATING OIL',
|
||||
# lubricating oil pressure
|
||||
r'\bLO_PRESS\b\b': 'LUBRICATING OIL PRESSURE',
|
||||
r'\bLO_PRESSURE\b\b': 'LUBRICATING OIL PRESSURE',
|
||||
r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
|
||||
r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
|
||||
# temperature
|
||||
r'\bL\.T\b\b': 'LOW TEMPERATURE',
|
||||
r'\bLT\b\b': 'LOW TEMPERATURE',
|
||||
r'\bH\.T\b\b': 'HIGH TEMPERATURE',
|
||||
r'\bHT\b\b': 'HIGH TEMPERATURE',
|
||||
r'\bL\.T\b': 'LOW TEMPERATURE',
|
||||
r'\bLT\b': 'LOW TEMPERATURE',
|
||||
r'\bH\.T\b': 'HIGH TEMPERATURE',
|
||||
r'\bHT\b': 'HIGH TEMPERATURE',
|
||||
# auxiliary boiler
|
||||
# replace these first before replacing AUXILIARY only
|
||||
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
|
||||
|
@ -108,27 +108,27 @@ desc_replacement_dict = {
|
|||
r'\bAUX BLR\b': 'AUXILIARY BOILER',
|
||||
r'\bAUX\.\b': 'AUXILIARY ',
|
||||
# composite boiler
|
||||
r'\bCOMP\. BOILER\b\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP\.BOILER\b\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP BOILER\b\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bWIND\.\b': 'WINDING',
|
||||
r'\bWINDING\b\b': 'WINDING',
|
||||
r'\bC\.S\.W\b\b': 'CSW',
|
||||
r'\bCSW\b\b': 'CSW',
|
||||
r'\bWINDING\b': 'WINDING',
|
||||
r'\bC\.S\.W\b': 'CSW',
|
||||
r'\bCSW\b': 'CSW',
|
||||
r'\bVLOT\.\b': 'VOLTAGE',
|
||||
r'\bVOLTAGE\b\b': 'VOLTAGE',
|
||||
r'\bVOLTAGE\b': 'VOLTAGE',
|
||||
r'\bVOLT\.\b': 'VOLTAGE',
|
||||
r'\bFREQ\.\b': 'FREQUENCY',
|
||||
r'\bFREQUENCY\b\b': 'FREQUENCY',
|
||||
r'\bFREQUENCY\b': 'FREQUENCY',
|
||||
r'\bCURR\.\b': 'CURRENT',
|
||||
r'\bCURRENT\b\b': 'CURRENT',
|
||||
r'\bTCA\b\b': 'TURBOCHARGER',
|
||||
r'\bTCB\b\b': 'TURBOCHARGER',
|
||||
r'\bCURRENT\b': 'CURRENT',
|
||||
r'\bTCA\b': 'TURBOCHARGER',
|
||||
r'\bTCB\b': 'TURBOCHARGER',
|
||||
r'\bT/C\b': 'TURBOCHARGER',
|
||||
r'\bT_C\b': 'TURBOCHARGER',
|
||||
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHAGER\b\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHARGER\b\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHAGER\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHARGER\b': 'TURBOCHARGER',
|
||||
# misc spelling errors
|
||||
r'\bOPERATOIN\b': 'OPERATION',
|
||||
# wrongly attached terms
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.95342
|
||||
F1 Score: 0.91344
|
||||
Precision: 0.91643
|
||||
Recall: 0.91052
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.95402
|
||||
F1 Score: 0.92950
|
||||
Precision: 0.92122
|
||||
Recall: 0.93848
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.95200
|
||||
F1 Score: 0.92726
|
||||
Precision: 0.91825
|
||||
Recall: 0.93712
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.96473
|
||||
F1 Score: 0.92708
|
||||
Precision: 0.91566
|
||||
Recall: 0.93950
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.95605
|
||||
F1 Score: 0.92244
|
||||
Precision: 0.91755
|
||||
Recall: 0.92754
|
|
@ -0,0 +1,214 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 64
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
BATCH_SIZE = 64
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,210 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {0: False, 1: True}
|
||||
label2id = {False: 0, True: 1}
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
||||
# reconstruct full training data with non-mdm data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
ships_list = list(set(test_df['ships_idx']))
|
||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-uncased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -10,7 +10,7 @@ from fuzzywuzzy import fuzz
|
|||
##################
|
||||
# global parameters
|
||||
DIAGNOSTIC = False
|
||||
THRESHOLD = 0.85
|
||||
THRESHOLD = 0.90
|
||||
FUZZY_SIM_THRESHOLD=95
|
||||
checkpoint_directory = "../../train/classification_bert_desc"
|
||||
|
||||
|
@ -264,9 +264,9 @@ def run_selection(fold):
|
|||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
|
@ -287,9 +287,9 @@ def run_selection(fold):
|
|||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
# one-class classification by similarity
|
||||
|
||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
||||
to MDM
|
|
@ -0,0 +1,134 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
|
||||
##################################################
|
||||
# helper functions
|
||||
|
||||
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
|
||||
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
def compute_top_k(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
_, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return top_k_values[0][0]
|
||||
|
||||
|
||||
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||
|
||||
|
||||
sim_list = []
|
||||
for select_idx in tqdm(test_df.index):
|
||||
top_sim_value = compute_top_k(select_idx)
|
||||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold = 0.90
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
print(f'F1 Score: {f1:.5f}')
|
||||
print(f'Precision: {precision:.5f}')
|
||||
print(f'Recall: {recall:.5f}')
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
run_similarity_classifier(fold)
|
|
@ -44,7 +44,7 @@ class Embedder():
|
|||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert"
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
|
@ -74,7 +74,7 @@ def find_closest(cos_sim_matrix, condition_source, condition_target):
|
|||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top 5 maximum values along axis 1
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
|
@ -168,7 +168,7 @@ for select_idx in tqdm(test_df.index):
|
|||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
# %%
|
||||
threshold = 0.9
|
||||
threshold = 0.95
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
# %%
|
|
@ -8,5 +8,21 @@ Each folder contains a training variation.
|
|||
|
||||
After training, each folder contains the checkpoint files for each fold.
|
||||
|
||||
`mapping` directory contains the code to run the model on test data and also
|
||||
produce the csv outputs.
|
||||
The folders are named with the following convention:
|
||||
|
||||
`<method_type>`\_`<model_type>`\_`<prediction_type>`\_`<included_fields>`
|
||||
|
||||
e.g.
|
||||
|
||||
"classification_bert_complete_desc_unit",
|
||||
|
||||
which means: folder to perform classification using the bert model, predicting
|
||||
for the complete thing+property output using description and unit
|
||||
|
||||
To train, just run `python train.py`
|
||||
|
||||
The inference code is within a folder `classification_prediction` or
|
||||
`mapping_prediction`.
|
||||
|
||||
Note: the classification\_t5 folders are depracated in favor of the BERT-based
|
||||
classification models.
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.76337
|
||||
F1 Score: 0.37980
|
||||
Precision: 0.36508
|
||||
Recall: 0.41523
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.77430
|
||||
F1 Score: 0.40473
|
||||
Precision: 0.39528
|
||||
Recall: 0.43303
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.77259
|
||||
F1 Score: 0.39538
|
||||
Precision: 0.37761
|
||||
Recall: 0.43633
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.77545
|
||||
F1 Score: 0.39792
|
||||
Precision: 0.38636
|
||||
Recall: 0.43003
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.74897
|
||||
F1 Score: 0.38827
|
||||
Precision: 0.37680
|
||||
Recall: 0.42382
|
|
@ -0,0 +1,241 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
# unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold, mdm_list):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# we only use the mdm subset
|
||||
test_df = test_df[test_df['MDM']].reset_index(drop=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 64
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
BATCH_SIZE = 64
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,216 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"{row['tag_description']}"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.77946
|
||||
F1 Score: 0.40686
|
||||
Precision: 0.39833
|
||||
Recall: 0.43814
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.78271
|
||||
F1 Score: 0.42730
|
||||
Precision: 0.42002
|
||||
Recall: 0.45670
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.78715
|
||||
F1 Score: 0.41108
|
||||
Precision: 0.39829
|
||||
Recall: 0.44992
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.79115
|
||||
F1 Score: 0.41810
|
||||
Precision: 0.40095
|
||||
Recall: 0.45760
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.76271
|
||||
F1 Score: 0.41752
|
||||
Precision: 0.41156
|
||||
Recall: 0.44899
|
|
@ -0,0 +1,241 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold, mdm_list):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# we only use the mdm subset
|
||||
test_df = test_df[test_df['MDM']].reset_index(drop=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 64
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
BATCH_SIZE = 64
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,217 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"{row['tag_description']}"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -1,3 +1,3 @@
|
|||
# translation
|
||||
|
||||
These files were from the GRS paper. These codes will not be used.
|
||||
This section is depracated in favor of the `train` folder.
|
Loading…
Reference in New Issue