Feat: added more classification and mapping variations
Feat: added grid-search for threshold in similarity-classifier Feat: added more abbreviation rules
This commit is contained in:
parent
1f3970459f
commit
ff6e11a3c0
|
@ -0,0 +1,293 @@
|
|||
|
||||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
|
||||
# %%
|
||||
fold = 5
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
# subset to mdm
|
||||
df = df[df['MDM']]
|
||||
|
||||
# create new fields 'mapping' and 'p_mapping'
|
||||
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||
|
||||
|
||||
thing_condition = df['p_thing'] == df['thing']
|
||||
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||
|
||||
property_condition = df['p_property'] == df['property']
|
||||
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||
|
||||
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||
|
||||
test_df = df
|
||||
|
||||
# %%
|
||||
print(len(error_thing_df))
|
||||
print(len(error_property_df))
|
||||
|
||||
# %%
|
||||
# thing_df.to_html('thing_errors.html')
|
||||
# property_df.to_html('property_errors.html')
|
||||
|
||||
##########################################
|
||||
# what we need now is understand why the model is making these mispredictions
|
||||
# import train data and test data
|
||||
# %%
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||
|
||||
# %%
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top 5 maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
####################################################
|
||||
# special find-back code
|
||||
# %%
|
||||
def find_back_element_with_print(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||
test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0]
|
||||
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||
predicted_test_data = predicted_test_data.to_list()[0]
|
||||
|
||||
print("*" * 80)
|
||||
print("idx:", select_idx)
|
||||
print("train desc", training_desc_list)
|
||||
print("train thing+property", training_data_pattern_list)
|
||||
print("test desc", test_desc_list)
|
||||
print("test thing+property", test_data_pattern_list)
|
||||
print("predicted thing+property", predicted_test_data)
|
||||
print("ships idx", test_ship_id)
|
||||
print("score:", top_k_values[0])
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
# %%
|
||||
def find_back_element(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
|
||||
# print(training_data_pattern_list)
|
||||
# print(test_data_pattern_list)
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# for error thing
|
||||
pattern_in_train = []
|
||||
for select_idx in error_thing_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
###
|
||||
# for error property
|
||||
# %%
|
||||
pattern_in_train = []
|
||||
for select_idx in error_property_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
|
||||
####################################################
|
||||
|
||||
# %%
|
||||
# make function to compute similarity of closest retrieved result
|
||||
def compute_similarity(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return np.mean(top_k_values[0])
|
||||
|
||||
# %%
|
||||
def print_summary(similarity_scores):
|
||||
# Convert list to numpy array for additional stats
|
||||
np_array = np.array(similarity_scores)
|
||||
|
||||
# Get stats
|
||||
mean_value = np.mean(np_array)
|
||||
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||
|
||||
# Display numpy results
|
||||
print("Mean:", mean_value)
|
||||
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||
|
||||
|
||||
# %%
|
||||
##########################################
|
||||
# Analyze the degree of similarity differences between correct and incorrect results
|
||||
|
||||
# %%
|
||||
# compute similarity scores for all values in error_thing_df
|
||||
similarity_thing_scores = []
|
||||
for idx in error_thing_df.index:
|
||||
similarity_thing_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_thing_scores)
|
||||
|
||||
|
||||
# %%
|
||||
similarity_property_scores = []
|
||||
for idx in error_property_df.index:
|
||||
similarity_property_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_property_scores)
|
||||
|
||||
# %%
|
||||
similarity_correct_scores = []
|
||||
for idx in correct_df.index:
|
||||
similarity_correct_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_correct_scores)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Sample data
|
||||
list1 = similarity_thing_scores
|
||||
list2 = similarity_property_scores
|
||||
list3 = similarity_correct_scores
|
||||
|
||||
# Plot histograms
|
||||
bins = 50
|
||||
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||
|
||||
# Labels and legend
|
||||
plt.xlabel('Value')
|
||||
plt.ylabel('Frequency')
|
||||
plt.legend(loc='upper right')
|
||||
plt.title('Histograms of Three Lists')
|
||||
|
||||
# Show plot
|
||||
plt.show()
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,320 @@
|
|||
|
||||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
|
||||
# %%
|
||||
fold = 5
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
# subset to mdm
|
||||
df = df[df['MDM']]
|
||||
|
||||
# create new fields 'mapping' and 'p_mapping'
|
||||
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||
|
||||
|
||||
thing_condition = df['p_thing'] == df['thing']
|
||||
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||
|
||||
property_condition = df['p_property'] == df['property']
|
||||
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||
|
||||
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||
|
||||
test_df = df
|
||||
|
||||
# %%
|
||||
print(len(error_thing_df))
|
||||
print(len(error_property_df))
|
||||
|
||||
# %%
|
||||
# thing_df.to_html('thing_errors.html')
|
||||
# property_df.to_html('property_errors.html')
|
||||
|
||||
##########################################
|
||||
# what we need now is understand why the model is making these mispredictions
|
||||
# import train data and test data
|
||||
# %%
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||
|
||||
# %%
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top 5 maximum values along axis 1
|
||||
top_k = 10
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
####################################################
|
||||
# special find-back code
|
||||
# %%
|
||||
def find_back_element_with_print(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||
test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0]
|
||||
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||
predicted_test_data = predicted_test_data.to_list()[0]
|
||||
|
||||
print("*" * 80)
|
||||
print("idx:", select_idx)
|
||||
print("train desc", training_desc_list)
|
||||
print("train thing+property", training_data_pattern_list)
|
||||
print("test desc", test_desc_list)
|
||||
print("test thing+property", test_data_pattern_list)
|
||||
print("predicted thing+property", predicted_test_data)
|
||||
print("ships idx", test_ship_id)
|
||||
print("score:", top_k_values[0])
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
# %%
|
||||
def find_back_element(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
|
||||
# print(training_data_pattern_list)
|
||||
# print(test_data_pattern_list)
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# for entire test df
|
||||
pattern_in_train = []
|
||||
for select_idx in test_df.index:
|
||||
result = find_back_element(select_idx)
|
||||
# print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
# %%
|
||||
# within pattern in train, what is the "correct" rate?
|
||||
sub_df = test_df[pattern_in_train]
|
||||
result = sub_df['mapping'] == sub_df['p_mapping']
|
||||
|
||||
# this is the realistic label result
|
||||
print(sum(result)/len(result)) # this is the more realistic result
|
||||
|
||||
# %%
|
||||
# for pattern not in training data, what is the "correct" rate?
|
||||
# within pattern in train, what is the "correct" rate?
|
||||
sub_df = test_df[~np.array(pattern_in_train)]
|
||||
result = sub_df['mapping'] == sub_df['p_mapping']
|
||||
|
||||
print(sum(result)/len(result))
|
||||
|
||||
|
||||
# %%
|
||||
# for error thing
|
||||
pattern_in_train = []
|
||||
for select_idx in error_thing_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
###
|
||||
# for error property
|
||||
# %%
|
||||
pattern_in_train = []
|
||||
for select_idx in error_property_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
|
||||
####################################################
|
||||
|
||||
# %%
|
||||
# make function to compute similarity of closest retrieved result
|
||||
def compute_similarity(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return np.mean(top_k_values[0])
|
||||
|
||||
# %%
|
||||
def print_summary(similarity_scores):
|
||||
# Convert list to numpy array for additional stats
|
||||
np_array = np.array(similarity_scores)
|
||||
|
||||
# Get stats
|
||||
mean_value = np.mean(np_array)
|
||||
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||
|
||||
# Display numpy results
|
||||
print("Mean:", mean_value)
|
||||
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||
|
||||
|
||||
# %%
|
||||
##########################################
|
||||
# Analyze the degree of similarity differences between correct and incorrect results
|
||||
|
||||
# %%
|
||||
# compute similarity scores for all values in error_thing_df
|
||||
similarity_thing_scores = []
|
||||
for idx in error_thing_df.index:
|
||||
similarity_thing_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_thing_scores)
|
||||
|
||||
|
||||
# %%
|
||||
similarity_property_scores = []
|
||||
for idx in error_property_df.index:
|
||||
similarity_property_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_property_scores)
|
||||
|
||||
# %%
|
||||
similarity_correct_scores = []
|
||||
for idx in correct_df.index:
|
||||
similarity_correct_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_correct_scores)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Sample data
|
||||
list1 = similarity_thing_scores
|
||||
list2 = similarity_property_scores
|
||||
list3 = similarity_correct_scores
|
||||
|
||||
# Plot histograms
|
||||
bins = 50
|
||||
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||
|
||||
# Labels and legend
|
||||
plt.xlabel('Value')
|
||||
plt.ylabel('Frequency')
|
||||
plt.legend(loc='upper right')
|
||||
plt.title('Histograms of Three Lists')
|
||||
|
||||
# Show plot
|
||||
plt.show()
|
||||
|
||||
|
||||
# %%
|
|
@ -7,7 +7,7 @@ import glob
|
|||
import numpy as np
|
||||
|
||||
# %%
|
||||
data_path = f'../data_preprocess/exports/preprocessed_data.csv'
|
||||
data_path = f'../../data_preprocess/exports/preprocessed_data.csv'
|
||||
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
|
@ -18,8 +18,8 @@ desc_list = df_pre['tag_description'].to_list()
|
|||
[ elem for elem in desc_list if isinstance(elem, float)]
|
||||
##########################################
|
||||
# %%
|
||||
fold = 1
|
||||
data_path = f'../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
fold = 5
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
|
@ -74,10 +74,10 @@ class Embedder():
|
|||
|
||||
|
||||
# %%
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../train/mapping_pattern"
|
||||
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
|
@ -199,12 +199,15 @@ for select_idx in error_thing_df.index:
|
|||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
|
||||
# %%
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
###
|
||||
# for error property
|
||||
# %%
|
||||
pattern_in_train = []
|
||||
for select_idx in error_property_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
result = find_back_element(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
|
|
|
@ -0,0 +1,334 @@
|
|||
|
||||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
|
||||
# %%
|
||||
data_path = f'../../data_preprocess/exports/preprocessed_data.csv'
|
||||
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
# remove nulls or NAs
|
||||
df_pre['tag_description'] = df_pre['tag_description'].fillna("NOVALUE")
|
||||
df_pre['tag_description'] = df_pre['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||
|
||||
df_pre['unit'] = df_pre['unit'].fillna("NOVALUE")
|
||||
df_pre['unit'] = df_pre['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||
|
||||
|
||||
# %%
|
||||
# this should be >0 if we are using abbreviations processed data
|
||||
desc_list = df_pre['tag_description'].to_list()
|
||||
|
||||
# check for floats
|
||||
# we have to eliminate presence of floats
|
||||
[ elem for elem in desc_list if isinstance(elem, float)]
|
||||
##########################################
|
||||
# %%
|
||||
fold = 5
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# %%
|
||||
# subset to mdm
|
||||
df = df[df['MDM']]
|
||||
|
||||
# create new fields 'mapping' and 'p_mapping'
|
||||
# these are analogous to 'pattern', where we combine 'thing' and 'property' without replacing the numbers
|
||||
df['mapping'] = df['thing'] + ' ' + df['property']
|
||||
df['p_mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||
|
||||
|
||||
thing_condition = df['p_thing'] == df['thing']
|
||||
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||||
|
||||
property_condition = df['p_property'] == df['property']
|
||||
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||||
|
||||
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||||
|
||||
test_df = df
|
||||
|
||||
# %%
|
||||
# thing_df.to_html('thing_errors.html')
|
||||
# property_df.to_html('property_errors.html')
|
||||
print(len(error_thing_df))
|
||||
print(len(error_property_df))
|
||||
|
||||
##########################################
|
||||
# what we need now is understand why the model is making these mispredictions
|
||||
# import train data and test data
|
||||
# %%
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
# name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
# element = f"{name}{desc}"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_mean_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df['mapping'] = train_df['thing'] + ' ' + train_df['property']
|
||||
|
||||
# remove NAs from train_df
|
||||
train_df['tag_description'] = train_df['tag_description'].fillna("NOVALUE")
|
||||
train_df['tag_description'] = train_df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||
|
||||
train_df['unit'] = train_df['unit'].fillna("NOVALUE")
|
||||
train_df['unit'] = train_df['unit'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||
|
||||
|
||||
|
||||
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||
|
||||
# %%
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top 5 maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
# %%
|
||||
error_thing_df.index
|
||||
|
||||
####################################################
|
||||
# special find-back code
|
||||
# %%
|
||||
def find_back_element_with_print(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||||
predicted_test_data = test_df[test_df.index == select_idx]['p_mapping']
|
||||
# predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||||
predicted_test_data = predicted_test_data.to_list()[0]
|
||||
|
||||
print("*" * 80)
|
||||
print("idx:", select_idx)
|
||||
print("train desc", training_desc_list)
|
||||
print("train thing+property", training_data_pattern_list)
|
||||
print("test desc", test_desc_list)
|
||||
print("test thing+property", test_data_pattern_list)
|
||||
print("predicted thing+property", predicted_test_data)
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
find_back_element_with_print(0)
|
||||
|
||||
# %%
|
||||
def find_back_element(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['mapping'].to_list()
|
||||
|
||||
test_data_pattern_list = test_df[test_df.index == select_idx]['mapping'].to_list()
|
||||
|
||||
# print(training_data_pattern_list)
|
||||
# print(test_data_pattern_list)
|
||||
|
||||
test_pattern = test_data_pattern_list[0]
|
||||
|
||||
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||||
|
||||
if sum(find_back_list) > 0:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
find_back_element(2884)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# for error thing
|
||||
pattern_in_train = []
|
||||
for select_idx in error_thing_df.index:
|
||||
result = find_back_element_with_print(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
|
||||
# %%
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
###
|
||||
# for error property
|
||||
# %%
|
||||
pattern_in_train = []
|
||||
for select_idx in error_property_df.index:
|
||||
result = find_back_element(select_idx)
|
||||
print("status:", result)
|
||||
pattern_in_train.append(result)
|
||||
|
||||
# %%
|
||||
sum(pattern_in_train)/len(pattern_in_train)
|
||||
|
||||
|
||||
####################################################
|
||||
|
||||
# %%
|
||||
# make function to compute similarity of closest retrieved result
|
||||
def compute_similarity(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
top_k_indices, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return np.mean(top_k_values[0])
|
||||
|
||||
# %%
|
||||
def print_summary(similarity_scores):
|
||||
# Convert list to numpy array for additional stats
|
||||
np_array = np.array(similarity_scores)
|
||||
|
||||
# Get stats
|
||||
mean_value = np.mean(np_array)
|
||||
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||||
|
||||
# Display numpy results
|
||||
print("Mean:", mean_value)
|
||||
print("25th, 50th, 75th Percentiles:", percentiles)
|
||||
|
||||
|
||||
# %%
|
||||
##########################################
|
||||
# Analyze the degree of similarity differences between correct and incorrect results
|
||||
|
||||
# %%
|
||||
# compute similarity scores for all values in error_thing_df
|
||||
similarity_thing_scores = []
|
||||
for idx in error_thing_df.index:
|
||||
similarity_thing_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_thing_scores)
|
||||
|
||||
|
||||
# %%
|
||||
similarity_property_scores = []
|
||||
for idx in error_property_df.index:
|
||||
similarity_property_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_property_scores)
|
||||
|
||||
# %%
|
||||
similarity_correct_scores = []
|
||||
for idx in correct_df.index:
|
||||
similarity_correct_scores.append(compute_similarity(idx))
|
||||
print_summary(similarity_correct_scores)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Sample data
|
||||
list1 = similarity_thing_scores
|
||||
list2 = similarity_property_scores
|
||||
list3 = similarity_correct_scores
|
||||
|
||||
# Plot histograms
|
||||
bins = 50
|
||||
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||||
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||||
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||||
|
||||
# Labels and legend
|
||||
plt.xlabel('Value')
|
||||
plt.ylabel('Frequency')
|
||||
plt.legend(loc='upper right')
|
||||
plt.title('Histograms of Three Lists')
|
||||
|
||||
# Show plot
|
||||
plt.show()
|
||||
|
||||
###########################################
|
||||
# %%
|
||||
# why do similarities of 97% still map correctly?
|
||||
score_array = np.array(similarity_correct_scores)
|
||||
# %%
|
||||
sum(score_array < 0.95)
|
||||
# %%
|
||||
correct_df[score_array < 0.95]['tag_description'].index.to_list()
|
||||
# %%
|
|
@ -5,7 +5,7 @@ Modified by: Richard Wong
|
|||
# %%
|
||||
import re
|
||||
import pandas as pd
|
||||
from replacement_dict import desc_replacement_dict, unit_replacement_dict
|
||||
from replacement_dict_new import desc_replacement_dict, unit_replacement_dict
|
||||
|
||||
# %%
|
||||
def count_abbreviation_occurrences(tag_descriptions, abbreviation):
|
||||
|
@ -48,20 +48,23 @@ df = pd.read_csv(file_path)
|
|||
# %%
|
||||
# Replace abbreviations
|
||||
print("running substitution for descriptions")
|
||||
df['tag_description']= df['tag_description'].fillna("NOVALUE")
|
||||
# normalize to uppercase
|
||||
# strip leading and trailing whitespace
|
||||
df['tag_description'] = df['tag_description'].str.strip()
|
||||
df['tag_description'] = df['tag_description'].str.upper()
|
||||
# Replace whitespace-only entries with "NOVALUE"
|
||||
# note that "N/A" can be read as nan
|
||||
# replace whitespace only values as NOVALUE
|
||||
df['tag_description']= df['tag_description'].fillna("NOVALUE")
|
||||
df['tag_description'] = df['tag_description'].replace(r'^\s*$', 'NOVALUE', regex=True)
|
||||
|
||||
# perform actual substitution
|
||||
tag_descriptions = df['tag_description']
|
||||
replaced_descriptions = replace_abbreviations(tag_descriptions, desc_replacement_dict)
|
||||
replaced_descriptions = cleanup_spaces(replaced_descriptions)
|
||||
replaced_descriptions = cleanup_dots(replaced_descriptions)
|
||||
df["tag_description"] = replaced_descriptions
|
||||
# print("Descriptions after replacement:", replaced_descriptions)
|
||||
# strip trailing whitespace
|
||||
df['tag_description'] = df['tag_description'].str.rstrip()
|
||||
df['tag_description'] = df['tag_description'].str.upper()
|
||||
|
||||
# %%
|
||||
print("running substitutions for units")
|
||||
|
|
|
@ -70,7 +70,8 @@ desc_replacement_dict = {
|
|||
r'\bD/G\b': 'GENERATOR_ENGINE',
|
||||
r'\bGEN\.\b': 'GENERATOR_ENGINE',
|
||||
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
||||
r'\b(\d+)MGE\b': r'NO\1 GENERATOR_ENGINE',
|
||||
# MGE?
|
||||
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
|
||||
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
||||
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
||||
r'\bE/R\b': 'ENGINE ROOM',
|
||||
|
@ -213,4 +214,4 @@ unit_replacement_dict = {
|
|||
r'\b°C\b': 'TEMPERATURE',
|
||||
r'\bºC\b': 'TEMPERATURE',
|
||||
r'\b℃\b': 'TEMPERATURE'
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,291 @@
|
|||
# substitution mapping for descriptions
|
||||
# Abbreviations and their replacements
|
||||
desc_replacement_dict = {
|
||||
r'\bLIST\b': 'LIST',
|
||||
# exhaust gas
|
||||
r'\bE\. GAS\b': 'EXHAUST GAS',
|
||||
r'\bEXH\.\b': 'EXHAUST',
|
||||
r'\bEXH\b': 'EXHAUST',
|
||||
r'\bEXHAUST\.\b': 'EXHAUST',
|
||||
r'\bEXHAUST\b': 'EXHAUST',
|
||||
r'\bBLR\.EXH\.\b': 'BOILER EXHAUST',
|
||||
# temperature
|
||||
r'\bTEMP\.\b': 'TEMPERATURE',
|
||||
r'\bTEMP\b': 'TEMPERATURE',
|
||||
r'\bTEMPERATURE\.\b': 'TEMPERATURE',
|
||||
r'\bTEMPERATURE\b': 'TEMPERATURE',
|
||||
# cylinder
|
||||
r'\bCYL(\d+)\b': r'CYLINDER\1',
|
||||
r'\bCYL\.(\d+)\b': r'CYLINDER\1',
|
||||
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
|
||||
r'\bCYL\.\b': 'CYLINDER',
|
||||
r'\bCYL\b': 'CYLINDER',
|
||||
# cooling
|
||||
r'\bCOOL\.\b': 'COOLING',
|
||||
r'\bCOOLING\b': 'COOLING',
|
||||
r'\bCOOLER\b': 'COOLER',
|
||||
r'\bCW\b': 'COOLING WATER',
|
||||
r'\bC\.W\b': 'COOLING WATER',
|
||||
r'\bJ\.C\.F\.W\b': 'JACKET COOLING FEED WATER',
|
||||
r'\bJ\.C F\.W\b': 'JACKET COOLING FEED WATER',
|
||||
r'\bJACKET C\.F\.W\b': 'JACKET COOLING FEED WATER',
|
||||
r'\bCOOL\. F\.W\b': 'COOLING FEED WATER',
|
||||
r'\bC\.F\.W\b': 'COOLING FEED WATER',
|
||||
# sea water
|
||||
r'\bC\.S\.W\b': 'COOLING SEA WATER',
|
||||
r'\bCSW\b': 'COOLING SEA WATER',
|
||||
r'\bC.S.W\b': 'COOLING SEA WATER',
|
||||
# water
|
||||
r'\bFEED W\.\b': 'FEED WATER',
|
||||
r'\bFEED W\b': 'FEED WATER',
|
||||
r'\bF\.W\b': 'FEED WATER',
|
||||
r'\bF\.W\.\b': 'FEED WATER',
|
||||
r'\bFW\b': 'FEED WATER',
|
||||
# r'\bWATER\b': 'WATER',
|
||||
r'\bSCAV\.\b': 'SCAVENGE',
|
||||
r'\bSCAV\b': 'SCAVENGE',
|
||||
r'\bINL\.\b': 'INLET',
|
||||
r'\bINLET\b': 'INLET',
|
||||
r'\bOUT\.\b': 'OUTLET',
|
||||
r'\bOUTL\.\b': 'OUTLET',
|
||||
r'\bOUTLET\b': 'OUTLET',
|
||||
# tank
|
||||
r'\bSTOR\.TK\b': 'STORAGE TANK',
|
||||
r'\bSTOR\. TK\b': 'STORAGE TANK',
|
||||
r'\bSERV\. TK\b': 'SERVICE TANK',
|
||||
r'\bSETT\. TK\b': 'SETTLING TANK',
|
||||
r'\bBK\b': 'BUNKER',
|
||||
r'\bTK\b': 'TANK',
|
||||
# PRESSURE
|
||||
r'\bPRESS\b': 'PRESSURE',
|
||||
r'\bPRESS\.\b': 'PRESSURE',
|
||||
r'\bPRESSURE\b': 'PRESSURE',
|
||||
r'PRS\b': 'PRESSURE', # this is a special replacement - it is safe to replace PRS w/o checks
|
||||
# ENGINE
|
||||
r'\bENG\.\b': 'ENGINE',
|
||||
r'\bENG\b': 'ENGINE',
|
||||
r'\bENGINE\b': 'ENGINE',
|
||||
r'\bENGINE SPEED\b': 'ENGINE SPEED',
|
||||
r'\bENGINE RUNNING\b': 'ENGINE RUNNING',
|
||||
r'\bENGINE RPM PICKUP\b': 'ENGINE RPM PICKUP',
|
||||
r'\bENGINE ROOM\b': 'ENGINE ROOM',
|
||||
r'\bE/R\b': 'ENGINE ROOM',
|
||||
# MAIN ENGINE
|
||||
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||
r'\bM/E NO(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||
r'\bM/E NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||
r'\bME NO.(\d+)\b': r'NO\1 MAIN_ENGINE',
|
||||
r'\bM/E\b': 'MAIN_ENGINE',
|
||||
r'\bM/E(.)\b': r'MAIN_ENGINE \1', # M/E(S/P)
|
||||
r'\bME(.)\b': r'MAIN_ENGINE \1', # ME(S/P)
|
||||
r'\bM_E\b': 'MAIN_ENGINE',
|
||||
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
|
||||
r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
|
||||
# ENGINE variants
|
||||
r'\bM_E_RPM\b': 'MAIN ENGINE RPM',
|
||||
r'\bM/E_M\.G\.O\.\b': 'MAIN ENGINE MARINE GAS OIL',
|
||||
r'\bM/E_H\.F\.O\.\b': 'MAIN ENGINE HEAVY FUEL OIL',
|
||||
# GENERATOR ENGINE
|
||||
r'\bGEN(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bGE(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||
# ensure that we substitute only for terms where following GE is num or special
|
||||
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
|
||||
r'\bG/E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bG/E\b': r'GENERATOR_ENGINE',
|
||||
r'\bG_E(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bG_E\b': 'GENERATOR_ENGINE',
|
||||
r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
|
||||
r'\bG/E_M\.G\.O\b': 'GENERATOR_ENGINE MARINE GAS OIL',
|
||||
# DG
|
||||
r'\bDG(\d+)\b': r'NO\1 GENERATOR_ENGINE',
|
||||
r'\bDG\b': 'GENERATOR_ENGINE',
|
||||
r'\bD/G\b': 'GENERATOR_ENGINE',
|
||||
r'\bDG(\d+)\((.)\)\b': r'NO\1\2 GENERATOR_ENGINE', # handle DG2(A)
|
||||
r'\bDG(\d+[A-Za-z])\b': r'NO\1 GENERATOR_ENGINE', # handle DG2A
|
||||
# DG variants
|
||||
r'\bDG_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
|
||||
r'\bDG_LOAD\b': 'GENERATOR_ENGINE LOAD',
|
||||
r'\bDG_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
|
||||
r'\bDG_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
|
||||
r'\bDG_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
|
||||
r'\bD/G_CURRENT\b': 'GENERATOR_ENGINE CURRENT',
|
||||
r'\bD/G_LOAD\b': 'GENERATOR_ENGINE LOAD',
|
||||
r'\bD/G_FREQUENCY\b': 'GENERATOR_ENGINE FREQUENCY',
|
||||
r'\bD/G_VOLTAGE\b': 'GENERATOR_ENGINE VOLTAGE',
|
||||
r'\bD/G_CLOSED\b': 'GENERATOR_ENGINE CLOSED',
|
||||
# MGE
|
||||
r'\b(\d+)MGE\b': r'NO\1 MAIN_GENERATOR_ENGINE',
|
||||
# generator engine and mgo
|
||||
r'\bG/E_M\.G\.O\.\b': r'GENERATOR_ENGINE MARINE GAS OIL',
|
||||
r'\bG/E_H\.F\.O\.\b': r'GENERATOR_ENGINE HEAVY FUEL OIL',
|
||||
# ultra low sulfur fuel oil
|
||||
r'\bU\.L\.S\.F\.O\b': 'ULTRA LOW SULFUR FUEL OIL',
|
||||
r'\bULSFO\b': 'ULTRA LOW SULFUR FUEL OIL',
|
||||
# marine gas oil
|
||||
r'\bM\.G\.O\b': 'MARINE GAS OIL',
|
||||
r'\bMGO\b': 'MARINE GAS OIL',
|
||||
r'\bMDO\b': 'MARINE DIESEL OIL',
|
||||
# light fuel oil
|
||||
r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
|
||||
r'\bLFO\b': 'LIGHT FUEL OIL',
|
||||
# heavy fuel oil
|
||||
r'\bHFO\b': 'HEAVY FUEL OIL',
|
||||
r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
|
||||
# piston cooling oil
|
||||
r'\bPCO\b': 'PISTON COOLING OIL',
|
||||
r'\bP\.C\.O\.\b': 'PISTON COOLING OIL',
|
||||
r'\bP\.C\.O\b': 'PISTON COOLING OIL',
|
||||
r'PISTION C.O': 'PISTON COOLING OIL',
|
||||
# diesel oil
|
||||
r'\bD.O\b': 'DIESEL OIL',
|
||||
# for remaining fuel oil that couldn't be substituted
|
||||
r'\bF\.O\b': 'FUEL OIL',
|
||||
r'\bFO\b': 'FUEL OIL',
|
||||
# lubricant
|
||||
r'\bLUB\.\b': 'LUBRICANT',
|
||||
r'\bLUBE\b': 'LUBRICANT',
|
||||
r'\bLUBR\.\b': 'LUBRICANT',
|
||||
r'\bLUBRICATING\.\b': 'LUBRICANT',
|
||||
r'\bLUBRICATION\.\b': 'LUBRICANT',
|
||||
# lubricating oil
|
||||
r'\bL\.O\b': 'LUBRICATING OIL',
|
||||
r'\bLO\b': 'LUBRICATING OIL',
|
||||
# lubricating oil pressure
|
||||
r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
|
||||
r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
|
||||
# temperature
|
||||
r'\bL\.T\b': 'LOW TEMPERATURE',
|
||||
r'\bLT\b': 'LOW TEMPERATURE',
|
||||
r'\bH\.T\b': 'HIGH TEMPERATURE',
|
||||
r'\bHT\b': 'HIGH TEMPERATURE',
|
||||
# BOILER
|
||||
# auxiliary boiler
|
||||
# replace these first before replacing AUXILIARY only
|
||||
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
|
||||
r'\bAUX\. BOILER\b': 'AUXILIARY BOILER',
|
||||
r'\bAUX BLR\b': 'AUXILIARY BOILER',
|
||||
r'\bAUX\.\b': 'AUXILIARY',
|
||||
r'\bAUX\b': 'AUXILIARY',
|
||||
# composite boiler
|
||||
r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
|
||||
r'\bCOMP\b': 'COMPOSITE',
|
||||
r'\bCMPS\b': 'COMPOSITE',
|
||||
# any other boiler
|
||||
r'\bBLR\.\b': 'BOILER',
|
||||
r'\bBLR\b': 'BOILER',
|
||||
r'\bBOILER W.CIRC.P/P\b': 'BOILER WATER CIRC P/P',
|
||||
# windind
|
||||
r'\bWIND\.\b': 'WINDING',
|
||||
r'\bWINDING\b': 'WINDING',
|
||||
# VOLTAGE/FREQ/CURRENT
|
||||
r'\bVLOT\.': 'VOLTAGE', # correct spelling
|
||||
r'\bVOLT\.': 'VOLTAGE',
|
||||
r'\bVOLTAGE\b': 'VOLTAGE',
|
||||
r'\bFREQ\.': 'FREQUENCY',
|
||||
r'\bFREQUENCY\b': 'FREQUENCY',
|
||||
r'\bCURR\.': 'CURRENT',
|
||||
r'\bCURRENT\b': 'CURRENT',
|
||||
# TURBOCHARGER
|
||||
r'\bTCA\b': 'TURBOCHARGER',
|
||||
r'\bTCB\b': 'TURBOCHARGER',
|
||||
r'\bT/C\b': 'TURBOCHARGER',
|
||||
r'\bT_C\b': 'TURBOCHARGER',
|
||||
r'\bT/C_RPM\b': 'TURBOCHARGER RPM',
|
||||
r'\bTC(\d+)\b': r'TURBOCHARGER\1',
|
||||
r'\bT/C(\d+)\b': r'TURBOCHARGER\1',
|
||||
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHAGER\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHARGER\b': 'TURBOCHARGER',
|
||||
r'\bTURBOCHG\b': 'TURBOCHARGER',
|
||||
# misc spelling errors
|
||||
r'\bOPERATOIN\b': 'OPERATION',
|
||||
# wrongly attached terms
|
||||
r'\bBOILERMGO\b': 'BOILER MGO',
|
||||
# additional standardizing replacement
|
||||
# replace # followed by a number with NO
|
||||
r'#(?=\d)\b': 'NO',
|
||||
r'\bNO\.(?=\d)\b': 'NO',
|
||||
r'\bNO\.\.(?=\d)\b': 'NO',
|
||||
# others:
|
||||
# generator
|
||||
r'\bGEN\.\b': 'GENERATOR',
|
||||
# others
|
||||
r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
|
||||
r'\bFLTR\b': 'FILTER',
|
||||
r'\bCLR\b': 'CLEAR',
|
||||
}
|
||||
|
||||
# substitution mapping for units
|
||||
# Abbreviations and their replacements
|
||||
unit_replacement_dict = {
|
||||
r'\b%\b': 'PERCENT',
|
||||
r'\b-\b': '',
|
||||
r'\b- \b': '',
|
||||
# ensure no character after A
|
||||
r'\bA(?!\w|/)': 'CURRENT',
|
||||
r'\bAmp(?!\w|/)': 'CURRENT',
|
||||
r'\bHz\b': 'HERTZ',
|
||||
r'\bKG/CM2\b': 'PRESSURE',
|
||||
r'\bKG/H\b': 'KILOGRAM PER HOUR',
|
||||
r'\bKNm\b': 'RPM',
|
||||
r'\bKW\b': 'POWER',
|
||||
r'\bKg(?!\w|/)': 'MASS',
|
||||
r'\bKw\b': 'POWER',
|
||||
r'\bL(?!\w|/)': 'VOLUME',
|
||||
r'\bMT/h\b': 'METRIC TONNES PER HOUR',
|
||||
r'\bMpa\b': 'PRESSURE',
|
||||
r'\bPF\b': 'POWER FACTOR',
|
||||
r'\bRPM\b': 'RPM',
|
||||
r'\bV(?!\w|/)': 'VOLTAGE',
|
||||
r'\bbar(?!\w|/)': 'PRESSURE',
|
||||
r'\bbarA\b': 'SCAVENGE PRESSURE',
|
||||
r'\bcST\b': 'VISCOSITY',
|
||||
r'\bcSt\b': 'VISCOSITY',
|
||||
r'\bcst\b': 'VISCOSITY',
|
||||
r'\bdeg(?!\w|/|\.)': 'DEGREE',
|
||||
r'\bdeg.C\b': 'TEMPERATURE',
|
||||
r'\bdegC\b': 'TEMPERATURE',
|
||||
r'\bdegree\b': 'DEGREE',
|
||||
r'\bdegreeC\b': 'TEMPERATURE',
|
||||
r'\bhPa\b': 'PRESSURE',
|
||||
r'\bhours\b': 'HOURS',
|
||||
r'\bkN\b': 'THRUST',
|
||||
r'\bkNm\b': 'TORQUE',
|
||||
r'\bkW\b': 'POWER',
|
||||
# ensure that kg is not followed by anything
|
||||
r'\bkg(?!\w|/)': 'FLOW', # somehow in the data its flow
|
||||
r'\bkg/P\b': 'MASS FLOW',
|
||||
r'\bkg/cm2\b': 'PRESSURE',
|
||||
r'\bkg/cm²\b': 'PRESSURE',
|
||||
r'\bkg/h\b': 'MASS FLOW',
|
||||
r'\bkg/hr\b': 'MASS FLOW',
|
||||
r'\bkg/pulse\b': '',
|
||||
r'\bkgf/cm2\b': 'PRESSURE',
|
||||
r'\bkgf/cm²\b': 'PRESSURE',
|
||||
r'\bkgf/㎠\b': 'PRESSURE',
|
||||
r'\bknots\b': 'SPEED',
|
||||
r'\bkw\b': 'POWER',
|
||||
r'\bl/Hr\b': 'VOLUME FLOW',
|
||||
r'\bl/h\b': 'VOLUME FLOW',
|
||||
r'\bl_Hr\b': 'VOLUME FLOW',
|
||||
r'\bl_hr\b': 'VOLUME FLOW',
|
||||
r'\bM\b': 'DRAFT', # for wind draft
|
||||
r'm': 'm', # wind draft and trim - not useful
|
||||
r'\bm/s\b': 'SPEED',
|
||||
r'\bm3\b': 'VOLUME',
|
||||
r'\bmH2O\b': 'DRAFT',
|
||||
r'\bmWC\b': 'DRAFT',
|
||||
r'\bmbar\b': 'PRESSURE',
|
||||
r'\bmg\b': 'ACCELERATION',
|
||||
r'\bmin-¹\b': '', # data too varied
|
||||
r'\bmm\b': '', # data too varied
|
||||
r'\bmmH2O\b': 'WATER DRUM LEVEL',
|
||||
r'\brev\b': 'RPM',
|
||||
r'\brpm\b': 'RPM',
|
||||
r'\bx1000min-¹\b': '',
|
||||
r'\b°C\b': 'TEMPERATURE',
|
||||
r'\bºC\b': 'TEMPERATURE',
|
||||
r'\b℃\b': 'TEMPERATURE'
|
||||
}
|
|
@ -0,0 +1 @@
|
|||
*.csv
|
|
@ -53,6 +53,17 @@ with open('output.txt', 'w') as file:
|
|||
|
||||
|
||||
# %%
|
||||
test = 'kg/cm3'
|
||||
print(re.sub(r'kg(?!\w|/)', 'flow', test))
|
||||
test = 'M/E(S) something'
|
||||
print(re.sub(r'\bM/E(.)', r'MAINE ENGINE \1', test))
|
||||
# %%
|
||||
test = 'NO.345A ENGINE'
|
||||
print(re.sub(r'\bNO\.(?=\d)\b', r'NO', test))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
test = 'S/G VLOT.'
|
||||
print(re.sub(r'VLOT\.', 'VOLT', test))
|
||||
# %%
|
||||
description = 'NO3 GENERATOR WINDING TEMPERATURE(T)'
|
||||
re.sub(r'\s+', ' ', description)
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,31 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.95342
|
||||
F1 Score: 0.91344
|
||||
Precision: 0.91643
|
||||
Recall: 0.91052
|
||||
Accuracy: 0.95174
|
||||
F1 Score: 0.90912
|
||||
Precision: 0.91788
|
||||
Recall: 0.90092
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.95402
|
||||
F1 Score: 0.92950
|
||||
Precision: 0.92122
|
||||
Recall: 0.93848
|
||||
Accuracy: 0.95159
|
||||
F1 Score: 0.92593
|
||||
Precision: 0.91697
|
||||
Recall: 0.93574
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.95200
|
||||
F1 Score: 0.92726
|
||||
Precision: 0.91825
|
||||
Recall: 0.93712
|
||||
Accuracy: 0.95373
|
||||
F1 Score: 0.93021
|
||||
Precision: 0.91935
|
||||
Recall: 0.94233
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.96473
|
||||
F1 Score: 0.92708
|
||||
Precision: 0.91566
|
||||
Recall: 0.93950
|
||||
Accuracy: 0.96524
|
||||
F1 Score: 0.92902
|
||||
Precision: 0.91306
|
||||
Recall: 0.94702
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.95605
|
||||
F1 Score: 0.92244
|
||||
Precision: 0.91755
|
||||
Recall: 0.92754
|
||||
Accuracy: 0.95643
|
||||
F1 Score: 0.92319
|
||||
Precision: 0.91793
|
||||
Recall: 0.92869
|
||||
|
|
|
@ -98,7 +98,7 @@ def test(fold):
|
|||
|
||||
# %%
|
||||
|
||||
max_length = 64
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
|
|
|
@ -74,6 +74,15 @@ def create_split_dataset(fold):
|
|||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||
|
||||
train_ships_set = set(train_ships_list)
|
||||
test_ships_set = set(ships_list)
|
||||
|
||||
# assertion for non data leakage
|
||||
assert not set(train_ships_set).intersection(test_ships_set)
|
||||
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
Fold: 1
|
||||
Best threshold: 0.9775
|
||||
Accuracy: 0.92512
|
||||
F1 Score: 0.76313
|
||||
Precision: 0.78069
|
||||
Recall: 0.74633
|
||||
Fold: 2
|
||||
Best threshold: 0.9775
|
||||
Accuracy: 0.92054
|
||||
F1 Score: 0.81117
|
||||
Precision: 0.77150
|
||||
Recall: 0.85514
|
||||
Fold: 3
|
||||
Best threshold: 0.985
|
||||
Accuracy: 0.93201
|
||||
F1 Score: 0.83578
|
||||
Precision: 0.81657
|
||||
Recall: 0.85592
|
||||
Fold: 4
|
||||
Best threshold: 0.9924999999999999
|
||||
Accuracy: 0.95334
|
||||
F1 Score: 0.82722
|
||||
Precision: 0.83341
|
||||
Recall: 0.82112
|
||||
Fold: 5
|
||||
Best threshold: 0.9924999999999999
|
||||
Accuracy: 0.92968
|
||||
F1 Score: 0.77680
|
||||
Precision: 0.83395
|
||||
Recall: 0.72698
|
|
@ -50,7 +50,8 @@ class Embedder():
|
|||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
name = f"<NAME>{row['tag_name']}<NAME"
|
||||
element = f"{name}{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
|
@ -64,7 +65,7 @@ class Embedder():
|
|||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
@ -72,7 +73,7 @@ def run_similarity_classifier(fold):
|
|||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit_name"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
|
@ -109,26 +110,54 @@ def run_similarity_classifier(fold):
|
|||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold = 0.90
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||
best_threshold = 0
|
||||
best_f1 = 0
|
||||
for threshold in threshold_values:
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
if f1 > best_f1:
|
||||
best_threshold = threshold
|
||||
best_f1 = f1
|
||||
|
||||
# compute metrics again with best threshold
|
||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
print(f'F1 Score: {f1:.5f}')
|
||||
print(f'Precision: {precision:.5f}')
|
||||
print(f'Recall: {recall:.5f}')
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print(f'Fold: {fold}', file=f)
|
||||
print(f'Best threshold: {best_threshold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
run_similarity_classifier(fold)
|
||||
|
|
|
@ -1,31 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.76337
|
||||
F1 Score: 0.37980
|
||||
Precision: 0.36508
|
||||
Recall: 0.41523
|
||||
Accuracy: 0.78277
|
||||
F1 Score: 0.73629
|
||||
Precision: 0.71419
|
||||
Recall: 0.78277
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.77430
|
||||
F1 Score: 0.40473
|
||||
Precision: 0.39528
|
||||
Recall: 0.43303
|
||||
Accuracy: 0.78598
|
||||
F1 Score: 0.73708
|
||||
Precision: 0.71578
|
||||
Recall: 0.78598
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.77259
|
||||
F1 Score: 0.39538
|
||||
Precision: 0.37761
|
||||
Recall: 0.43633
|
||||
Accuracy: 0.79819
|
||||
F1 Score: 0.74411
|
||||
Precision: 0.71749
|
||||
Recall: 0.79819
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.77545
|
||||
F1 Score: 0.39792
|
||||
Precision: 0.38636
|
||||
Recall: 0.43003
|
||||
Accuracy: 0.79543
|
||||
F1 Score: 0.73902
|
||||
Precision: 0.71094
|
||||
Recall: 0.79543
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.74897
|
||||
F1 Score: 0.38827
|
||||
Precision: 0.37680
|
||||
Recall: 0.42382
|
||||
Accuracy: 0.77279
|
||||
F1 Score: 0.72098
|
||||
Precision: 0.69817
|
||||
Recall: 0.77279
|
||||
|
|
|
@ -27,6 +27,9 @@ from tqdm import tqdm
|
|||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
|
@ -185,7 +188,6 @@ def test(fold):
|
|||
actual_labels = []
|
||||
|
||||
|
||||
BATCH_SIZE = 64
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
|
@ -217,9 +219,11 @@ def test(fold):
|
|||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
|
|
@ -57,7 +57,7 @@ for idx, val in enumerate(mdm_list):
|
|||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"{row['tag_description']}"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
|
@ -100,7 +100,7 @@ def train(fold):
|
|||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
||||
model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
|
@ -177,8 +177,8 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -1,31 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.77946
|
||||
F1 Score: 0.40686
|
||||
Precision: 0.39833
|
||||
Recall: 0.43814
|
||||
Accuracy: 0.78940
|
||||
F1 Score: 0.73284
|
||||
Precision: 0.70389
|
||||
Recall: 0.78940
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.78271
|
||||
F1 Score: 0.42730
|
||||
Precision: 0.42002
|
||||
Recall: 0.45670
|
||||
Accuracy: 0.78411
|
||||
F1 Score: 0.73695
|
||||
Precision: 0.71914
|
||||
Recall: 0.78411
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.78715
|
||||
F1 Score: 0.41108
|
||||
Precision: 0.39829
|
||||
Recall: 0.44992
|
||||
Accuracy: 0.80522
|
||||
F1 Score: 0.75406
|
||||
Precision: 0.72847
|
||||
Recall: 0.80522
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.79115
|
||||
F1 Score: 0.41810
|
||||
Precision: 0.40095
|
||||
Recall: 0.45760
|
||||
Accuracy: 0.80780
|
||||
F1 Score: 0.75361
|
||||
Precision: 0.72432
|
||||
Recall: 0.80780
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.76271
|
||||
F1 Score: 0.41752
|
||||
Precision: 0.41156
|
||||
Recall: 0.44899
|
||||
Accuracy: 0.76958
|
||||
F1 Score: 0.71912
|
||||
Precision: 0.69965
|
||||
Recall: 0.76958
|
||||
|
|
|
@ -27,6 +27,9 @@ from tqdm import tqdm
|
|||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 128
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
|
@ -123,7 +126,7 @@ def test(fold):
|
|||
|
||||
# %%
|
||||
|
||||
max_length = 64
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
|
@ -185,7 +188,6 @@ def test(fold):
|
|||
actual_labels = []
|
||||
|
||||
|
||||
BATCH_SIZE = 64
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
|
@ -217,9 +219,13 @@ def test(fold):
|
|||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
|
|
@ -57,9 +57,9 @@ for idx, val in enumerate(mdm_list):
|
|||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"{row['tag_description']}"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
|
@ -101,7 +101,7 @@ def train(fold):
|
|||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-uncased'
|
||||
model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
|
@ -178,8 +178,8 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,31 @@
|
|||
|
||||
********************************************************************************
|
||||
Fold: 1
|
||||
Accuracy: 0.68859
|
||||
F1 Score: 0.62592
|
||||
Precision: 0.60775
|
||||
Recall: 0.68859
|
||||
********************************************************************************
|
||||
Fold: 2
|
||||
Accuracy: 0.72150
|
||||
F1 Score: 0.65739
|
||||
Precision: 0.63652
|
||||
Recall: 0.72150
|
||||
********************************************************************************
|
||||
Fold: 3
|
||||
Accuracy: 0.72038
|
||||
F1 Score: 0.65781
|
||||
Precision: 0.63249
|
||||
Recall: 0.72038
|
||||
********************************************************************************
|
||||
Fold: 4
|
||||
Accuracy: 0.74167
|
||||
F1 Score: 0.68167
|
||||
Precision: 0.65489
|
||||
Recall: 0.74167
|
||||
********************************************************************************
|
||||
Fold: 5
|
||||
Accuracy: 0.67705
|
||||
F1 Score: 0.61273
|
||||
Precision: 0.59472
|
||||
Recall: 0.67705
|
|
@ -0,0 +1,248 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{name}{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold, mdm_list):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# we only use the mdm subset
|
||||
test_df = test_df[test_df['MDM']].reset_index(drop=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
average_parameter = 'weighted'
|
||||
zero_division_parameter = 0
|
||||
f1 = f1_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
precision = precision_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
recall = recall_score(y_true, y_pred, average=average_parameter, zero_division=zero_division_parameter)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,218 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{name}{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -52,7 +52,7 @@ for idx, val in enumerate(mdm_list):
|
|||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"{row['tag_description']}"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
pattern = row['pattern']
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9455750118315192
|
||||
Accuracy for fold 2: 0.8864485981308411
|
||||
Accuracy for fold 3: 0.9558232931726908
|
||||
Accuracy for fold 4: 0.9686013320647003
|
||||
Accuracy for fold 5: 0.896930829134219
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9588263132986276
|
||||
Accuracy for fold 2: 0.9182242990654206
|
||||
Accuracy for fold 3: 0.9633534136546185
|
||||
Accuracy for fold 4: 0.9809705042816366
|
||||
Accuracy for fold 5: 0.8891433806688044
|
|
@ -0,0 +1,73 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,196 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
element = {
|
||||
'input' : f"{desc}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 64
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9522006625650734
|
||||
Accuracy for fold 2: 0.9093457943925234
|
||||
Accuracy for fold 3: 0.9678714859437751
|
||||
Accuracy for fold 4: 0.9814462416745956
|
||||
Accuracy for fold 5: 0.890975721484196
|
|
@ -6,6 +6,8 @@ from inference import Inference
|
|||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
|
@ -32,7 +34,7 @@ def infer_and_select(fold):
|
|||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=256, max_length=128)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,169 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{name}{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9465215333648841
|
||||
Accuracy for fold 2: 0.9102803738317757
|
||||
Accuracy for fold 3: 0.9728915662650602
|
||||
Accuracy for fold 4: 0.9843006660323501
|
||||
Accuracy for fold 5: 0.8996793403573065
|
|
@ -0,0 +1,73 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,198 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{name}{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 64
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,27 @@
|
|||
#!/bin/bash
|
||||
|
||||
cd classification_bert_complete_desc/classification_prediction/
|
||||
micromamba run -n hug python predict.py
|
||||
cd ../..
|
||||
|
||||
cd classification_bert_complete_desc_unit/classification_prediction/
|
||||
micromamba run -n hug python predict.py
|
||||
cd ../..
|
||||
|
||||
cd classification_bert_complete_desc_unit_name/classification_prediction/
|
||||
micromamba run -n hug python predict.py
|
||||
cd ../..
|
||||
|
||||
# cd mapping_t5_complete_desc/mapping_prediction/
|
||||
# micromamba run -n hug python predict.py
|
||||
# cd ../..
|
||||
#
|
||||
# cd mapping_t5_complete_desc_unit/mapping_prediction/
|
||||
# micromamba run -n hug python predict.py
|
||||
# cd ../..
|
||||
#
|
||||
# cd mapping_t5_complete_desc_unit_name/mapping_prediction/
|
||||
# micromamba run -n hug python predict.py
|
||||
# cd ../..
|
||||
|
||||
|
|
@ -0,0 +1,25 @@
|
|||
#!/bin/bash
|
||||
|
||||
# cd classification_bert_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
#
|
||||
# cd classification_bert_complete_desc_unit
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
cd classification_bert_complete_desc_unit_name
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd ..
|
||||
|
||||
# cd mapping_t5_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
#
|
||||
# cd mapping_t5_complete_desc_unit
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
#
|
||||
# cd mapping_t5_complete_name_desc_unit
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
Loading…
Reference in New Issue