Feat: added embedding plots viewer for different models
This commit is contained in:
parent
b01ca4f395
commit
c64e4bccfc
|
@ -0,0 +1 @@
|
|||
*__pycache__
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,237 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
class SaveModelCallback(TrainerCallback):
|
||||
"""Custom callback to save model weights at specific intervals during training."""
|
||||
def __init__(self, save_interval):
|
||||
super().__init__()
|
||||
self.save_interval = save_interval # save every 'save_interval' steps
|
||||
|
||||
def on_step_end(self, args, state, control, **kwargs):
|
||||
"""This method is called at the end of each training step."""
|
||||
# Check if it's time to save (based on global_step and save_interval)
|
||||
if state.global_step % self.save_interval == 0 and state.global_step > 0:
|
||||
# Path where the model should be saved
|
||||
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
|
||||
model = kwargs['model']
|
||||
model.save_pretrained(output_dir)
|
||||
print(f"Model saved to {output_dir} at step {state.global_step}")
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = 'checkpoint'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="no",
|
||||
save_strategy="no",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
max_steps=1201,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[SaveModelCallback(save_interval=200)]
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,228 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
class SaveModelCallback(TrainerCallback):
|
||||
"""Custom callback to save model weights at specific intervals during training."""
|
||||
def __init__(self, save_interval):
|
||||
super().__init__()
|
||||
self.save_interval = save_interval # save every 'save_interval' steps
|
||||
|
||||
def on_step_end(self, args, state, control, **kwargs):
|
||||
"""This method is called at the end of each training step."""
|
||||
# Check if it's time to save (based on global_step and save_interval)
|
||||
if state.global_step % self.save_interval == 0 and state.global_step > 0:
|
||||
# Path where the model should be saved
|
||||
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
|
||||
model = kwargs['model']
|
||||
model.save_pretrained(output_dir)
|
||||
print(f"Model saved to {output_dir} at step {state.global_step}")
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
|
||||
pattern = row['pattern']
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=len(mdm_list),
|
||||
id2label=id2label,
|
||||
label2id=label2id)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="no",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
max_steps=1200,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[SaveModelCallback(save_interval=200)]
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,92 @@
|
|||
# this code tries to analyze the embeddings of the encoder
|
||||
# %%
|
||||
import pandas as pd
|
||||
import os
|
||||
from inference import Embedder_bert
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
checkpoint_directory = 'classification_bert_complete_desc_unit/checkpoint'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
fold = 1
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
# assign labels
|
||||
df['thing_property'] = df['thing'] + " " + df['property']
|
||||
thing_property = df['thing_property'].to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
def generate_labels(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
pattern = f"{row['thing_property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
output_list.append(index)
|
||||
|
||||
return output_list
|
||||
|
||||
df['labels'] = generate_labels(df, mdm_list)
|
||||
|
||||
# rank labels by counts
|
||||
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
|
||||
|
||||
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
|
||||
|
||||
input_df = df.iloc[indices].reset_index(drop=True)
|
||||
|
||||
# %%
|
||||
input_df
|
||||
|
||||
# %%
|
||||
def run(step):
|
||||
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
|
||||
embedder = Embedder_bert(checkpoint_path)
|
||||
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
|
||||
embedder.create_embedding()
|
||||
embeddings = embedder.embeddings
|
||||
return embeddings
|
||||
|
||||
# %%
|
||||
embeddings = (run(step=1200))
|
||||
labels = input_df['labels']
|
||||
|
||||
# Reducing dimensions with t-SNE
|
||||
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
|
||||
embeddings_2d = tsne.fit_transform(embeddings)
|
||||
|
||||
# Create a color map from labels to colors
|
||||
unique_labels = np.unique(labels)
|
||||
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
|
||||
label_to_color = dict(zip(unique_labels, colors))
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(8, 6))
|
||||
for label in unique_labels:
|
||||
idx = (labels == label)
|
||||
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
|
||||
|
||||
plt.title('2D t-SNE Visualization of Embeddings')
|
||||
plt.xlabel('Component 1')
|
||||
plt.ylabel('Component 2')
|
||||
plt.legend(title='Group')
|
||||
plt.show()
|
||||
|
||||
# %%
|
|
@ -0,0 +1,133 @@
|
|||
# this code tries to analyze the embeddings of the encoder
|
||||
# %%
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Embedder_bert
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
import matplotlib.pyplot as plt
|
||||
import torch
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
||||
checkpoint_directory = 'classification_bert_complete_desc_unit/checkpoint'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
fold = 1
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
# assign labels
|
||||
df['thing_property'] = df['thing'] + " " + df['property']
|
||||
thing_property = df['thing_property'].to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
def generate_labels(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
pattern = f"{row['thing_property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
output_list.append(index)
|
||||
|
||||
return output_list
|
||||
|
||||
df['labels'] = generate_labels(df, mdm_list)
|
||||
|
||||
# rank labels by counts
|
||||
top_1_labels = df['labels'].value_counts()[0:10].index.to_list()
|
||||
|
||||
# indices = df[df['labels'].isin(top_1_labels)].index.to_list()
|
||||
indices = df[df['labels'] == 56].index.to_list()
|
||||
|
||||
input_df = df.iloc[indices].reset_index(drop=True)
|
||||
# indices_2 = df[df['labels'] == 381].index.to_list()
|
||||
# indices.extend(indices_2)
|
||||
|
||||
# %%
|
||||
input_df
|
||||
|
||||
# %%
|
||||
def run(step):
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint-{step}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
|
||||
|
||||
embedder = Embedder_bert(checkpoint_path)
|
||||
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
|
||||
embedder.create_embedding()
|
||||
embeddings = embedder.embeddings
|
||||
|
||||
|
||||
# Example embeddings array
|
||||
size = len(embeddings)
|
||||
labels = [f'{step}' for i in range(size)]
|
||||
return embeddings, labels
|
||||
|
||||
# %%
|
||||
embeddings = []
|
||||
labels = []
|
||||
for step in [200, 400, 600, 800]:
|
||||
embeds, lbs = (run(step))
|
||||
embeddings.append(embeds)
|
||||
labels.extend(lbs)
|
||||
|
||||
|
||||
# %%
|
||||
labels = np.array(labels)
|
||||
embeddings = torch.cat(embeddings, dim=0)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# Reducing dimensions with t-SNE
|
||||
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
|
||||
embeddings_2d = tsne.fit_transform(embeddings)
|
||||
|
||||
# plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.5)
|
||||
# plt.xlim([embeddings_2d[:, 0].min() - 1, embeddings_2d[:, 0].max() + 1])
|
||||
# plt.ylim([embeddings_2d[:, 1].min() - 1, embeddings_2d[:, 1].max() + 1])
|
||||
# plt.show()
|
||||
|
||||
# %%
|
||||
# Create a color map from labels to colors
|
||||
unique_labels = np.unique(labels)
|
||||
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
|
||||
label_to_color = dict(zip(unique_labels, colors))
|
||||
|
||||
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(8, 6))
|
||||
for label in unique_labels:
|
||||
idx = (labels == label)
|
||||
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
|
||||
|
||||
plt.title('2D t-SNE Visualization of Embeddings')
|
||||
plt.xlabel('Component 1')
|
||||
plt.ylabel('Component 2')
|
||||
# plt.xlim([embeddings_2d[:, 0].min() - 1, embeddings_2d[:, 0].max() + 1])
|
||||
# plt.ylim([embeddings_2d[:, 1].min() - 1, embeddings_2d[:, 1].max() + 1])
|
||||
plt.legend(title='Group')
|
||||
plt.show()
|
||||
|
||||
# %%
|
|
@ -0,0 +1,92 @@
|
|||
# this code tries to analyze the embeddings of the encoder
|
||||
# %%
|
||||
import pandas as pd
|
||||
import os
|
||||
from inference import Embedder_bert
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
checkpoint_directory = 'classification_bert_pattern_desc_unit/checkpoint'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
fold = 1
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
# assign labels
|
||||
df['thing_property'] = df['thing'] + " " + df['property']
|
||||
thing_property = df['thing_property'].to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
def generate_labels(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
pattern = f"{row['thing_property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
output_list.append(index)
|
||||
|
||||
return output_list
|
||||
|
||||
df['labels'] = generate_labels(df, mdm_list)
|
||||
|
||||
# rank labels by counts
|
||||
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
|
||||
|
||||
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
|
||||
|
||||
input_df = df.iloc[indices].reset_index(drop=True)
|
||||
|
||||
# %%
|
||||
input_df
|
||||
|
||||
# %%
|
||||
def run(step):
|
||||
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
|
||||
embedder = Embedder_bert(checkpoint_path)
|
||||
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
|
||||
embedder.create_embedding()
|
||||
embeddings = embedder.embeddings
|
||||
return embeddings
|
||||
|
||||
# %%
|
||||
embeddings = (run(step=1200))
|
||||
labels = input_df['labels']
|
||||
|
||||
# Reducing dimensions with t-SNE
|
||||
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
|
||||
embeddings_2d = tsne.fit_transform(embeddings)
|
||||
|
||||
# Create a color map from labels to colors
|
||||
unique_labels = np.unique(labels)
|
||||
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
|
||||
label_to_color = dict(zip(unique_labels, colors))
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(8, 6))
|
||||
for label in unique_labels:
|
||||
idx = (labels == label)
|
||||
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
|
||||
|
||||
plt.title('2D t-SNE Visualization of Embeddings')
|
||||
plt.xlabel('Component 1')
|
||||
plt.ylabel('Component 2')
|
||||
plt.legend(title='Group')
|
||||
plt.show()
|
||||
|
||||
# %%
|
|
@ -0,0 +1,89 @@
|
|||
# this code tries to analyze the embeddings of the encoder
|
||||
# %%
|
||||
import pandas as pd
|
||||
import os
|
||||
from inference import Embedder_t5
|
||||
import numpy as np
|
||||
from sklearn.manifold import TSNE
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
checkpoint_directory = 'mapping_t5_complete_desc_unit/checkpoint'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
fold = 1
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
# assign labels
|
||||
df['thing_property'] = df['thing'] + " " + df['property']
|
||||
thing_property = df['thing_property'].to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
def generate_labels(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
pattern = f"{row['thing_property']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
output_list.append(index)
|
||||
|
||||
return output_list
|
||||
|
||||
df['labels'] = generate_labels(df, mdm_list)
|
||||
|
||||
# rank labels by counts
|
||||
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
|
||||
|
||||
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
|
||||
|
||||
input_df = df.iloc[indices].reset_index(drop=True)
|
||||
|
||||
# %%
|
||||
def run(step):
|
||||
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
|
||||
embedder = Embedder_t5(checkpoint_path)
|
||||
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
|
||||
embedder.create_embedding()
|
||||
embeddings = embedder.embeddings
|
||||
return embeddings
|
||||
|
||||
# %%
|
||||
embeddings = (run(step=1200))
|
||||
labels = input_df['labels']
|
||||
|
||||
# Reducing dimensions with t-SNE
|
||||
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
|
||||
embeddings_2d = tsne.fit_transform(embeddings)
|
||||
|
||||
# Create a color map from labels to colors
|
||||
unique_labels = np.unique(labels)
|
||||
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
|
||||
label_to_color = dict(zip(unique_labels, colors))
|
||||
|
||||
# Plotting
|
||||
plt.figure(figsize=(8, 6))
|
||||
for label in unique_labels:
|
||||
idx = (labels == label)
|
||||
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
|
||||
|
||||
plt.title('2D t-SNE Visualization of Embeddings')
|
||||
plt.xlabel('Component 1')
|
||||
plt.ylabel('Component 2')
|
||||
plt.legend(title='Group')
|
||||
plt.show()
|
||||
|
||||
# %%
|
|
@ -0,0 +1,407 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
|
||||
class Embedder_t5():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
embeddings: list
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
self.embeddings = []
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def create_embedding(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
|
||||
# Use the hidden state of the first token as the sequence representation
|
||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
self.embeddings.append(pooled_output.to('cpu'))
|
||||
|
||||
self.embeddings = torch.cat(self.embeddings, dim=0)
|
||||
|
||||
|
||||
class Embedder_bert():
|
||||
tokenizer: AutoTokenizer
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
embeddings: list
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
self.embeddings = []
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained('google-bert/bert-base-cased', return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSequenceClassification.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def create_embedding(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
# get last layer
|
||||
encoder_outputs = self.model.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||
# Use the hidden state of the first token as the sequence representation
|
||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
self.embeddings.append(pooled_output.to('cpu'))
|
||||
|
||||
self.embeddings = torch.cat(self.embeddings, dim=0)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log/
|
|
@ -0,0 +1,216 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
TrainerCallback
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
class SaveModelCallback(TrainerCallback):
|
||||
"""Custom callback to save model weights at specific intervals during training."""
|
||||
def __init__(self, save_interval):
|
||||
super().__init__()
|
||||
self.save_interval = save_interval # save every 'save_interval' steps
|
||||
|
||||
def on_step_end(self, args, state, control, **kwargs):
|
||||
"""This method is called at the end of each training step."""
|
||||
# Check if it's time to save (based on global_step and save_interval)
|
||||
if state.global_step % self.save_interval == 0 and state.global_step > 0:
|
||||
# Path where the model should be saved
|
||||
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
|
||||
model = kwargs['model']
|
||||
model.save_pretrained(output_dir)
|
||||
print(f"Model saved to {output_dir} at step {state.global_step}")
|
||||
|
||||
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = 'checkpoint'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 64
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="no",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
max_steps=1200,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=[SaveModelCallback(save_interval=200)]
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
Loading…
Reference in New Issue