Feat: added embedding plots viewer for different models

This commit is contained in:
Richard Wong 2024-12-12 16:13:47 +09:00
parent b01ca4f395
commit c64e4bccfc
12 changed files with 1501 additions and 0 deletions

1
interpretation/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*__pycache__

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,237 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
class SaveModelCallback(TrainerCallback):
"""Custom callback to save model weights at specific intervals during training."""
def __init__(self, save_interval):
super().__init__()
self.save_interval = save_interval # save every 'save_interval' steps
def on_step_end(self, args, state, control, **kwargs):
"""This method is called at the end of each training step."""
# Check if it's time to save (based on global_step and save_interval)
if state.global_step % self.save_interval == 0 and state.global_step > 0:
# Path where the model should be saved
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
model = kwargs['model']
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir} at step {state.global_step}")
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
pattern = f"{row['thing'] + row['property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = 'checkpoint'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
# model_checkpoint = "distilbert/distilbert-base-uncased"
model_checkpoint = 'google-bert/bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="no",
save_strategy="no",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=128,
per_device_eval_batch_size=128,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
max_steps=1201,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[SaveModelCallback(save_interval=200)]
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1]:
print(fold)
train(fold)
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,228 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
class SaveModelCallback(TrainerCallback):
"""Custom callback to save model weights at specific intervals during training."""
def __init__(self, save_interval):
super().__init__()
self.save_interval = save_interval # save every 'save_interval' steps
def on_step_end(self, args, state, control, **kwargs):
"""This method is called at the end of each training step."""
# Check if it's time to save (based on global_step and save_interval)
if state.global_step % self.save_interval == 0 and state.global_step > 0:
# Path where the model should be saved
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
model = kwargs['model']
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir} at step {state.global_step}")
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
mdm_list = sorted(list((set(full_df['pattern']))))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
pattern = row['pattern']
try:
index = mdm_list.index(pattern)
except ValueError:
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
model_checkpoint = 'google-bert/bert-base-cased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="no",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=128,
per_device_eval_batch_size=128,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
max_steps=1200,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
callbacks=[SaveModelCallback(save_interval=200)]
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1]:
print(fold)
train(fold)
# %%

View File

@ -0,0 +1,92 @@
# this code tries to analyze the embeddings of the encoder
# %%
import pandas as pd
import os
from inference import Embedder_bert
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
checkpoint_directory = 'classification_bert_complete_desc_unit/checkpoint'
BATCH_SIZE = 512
fold = 1
print(f"Inference for fold {fold}")
# import test data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df = df[df['MDM']].reset_index(drop=True)
# get target data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
# assign labels
df['thing_property'] = df['thing'] + " " + df['property']
thing_property = df['thing_property'].to_list()
mdm_list = sorted(list(set(thing_property)))
def generate_labels(df, mdm_list):
output_list = []
for _, row in df.iterrows():
pattern = f"{row['thing_property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
output_list.append(index)
return output_list
df['labels'] = generate_labels(df, mdm_list)
# rank labels by counts
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
input_df = df.iloc[indices].reset_index(drop=True)
# %%
input_df
# %%
def run(step):
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
embedder = Embedder_bert(checkpoint_path)
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
embedder.create_embedding()
embeddings = embedder.embeddings
return embeddings
# %%
embeddings = (run(step=1200))
labels = input_df['labels']
# Reducing dimensions with t-SNE
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
embeddings_2d = tsne.fit_transform(embeddings)
# Create a color map from labels to colors
unique_labels = np.unique(labels)
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
label_to_color = dict(zip(unique_labels, colors))
# Plotting
plt.figure(figsize=(8, 6))
for label in unique_labels:
idx = (labels == label)
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
plt.title('2D t-SNE Visualization of Embeddings')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.legend(title='Group')
plt.show()
# %%

View File

@ -0,0 +1,133 @@
# this code tries to analyze the embeddings of the encoder
# %%
import pandas as pd
import os
import glob
from inference import Embedder_bert
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import torch
from sklearn.preprocessing import StandardScaler
checkpoint_directory = 'classification_bert_complete_desc_unit/checkpoint'
BATCH_SIZE = 512
fold = 1
print(f"Inference for fold {fold}")
# import test data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df = df[df['MDM']].reset_index(drop=True)
# get target data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
# assign labels
df['thing_property'] = df['thing'] + " " + df['property']
thing_property = df['thing_property'].to_list()
mdm_list = sorted(list(set(thing_property)))
def generate_labels(df, mdm_list):
output_list = []
for _, row in df.iterrows():
pattern = f"{row['thing_property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
output_list.append(index)
return output_list
df['labels'] = generate_labels(df, mdm_list)
# rank labels by counts
top_1_labels = df['labels'].value_counts()[0:10].index.to_list()
# indices = df[df['labels'].isin(top_1_labels)].index.to_list()
indices = df[df['labels'] == 56].index.to_list()
input_df = df.iloc[indices].reset_index(drop=True)
# indices_2 = df[df['labels'] == 381].index.to_list()
# indices.extend(indices_2)
# %%
input_df
# %%
def run(step):
# run inference
# checkpoint
# Use glob to find matching paths
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint-{step}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
embedder = Embedder_bert(checkpoint_path)
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
embedder.create_embedding()
embeddings = embedder.embeddings
# Example embeddings array
size = len(embeddings)
labels = [f'{step}' for i in range(size)]
return embeddings, labels
# %%
embeddings = []
labels = []
for step in [200, 400, 600, 800]:
embeds, lbs = (run(step))
embeddings.append(embeds)
labels.extend(lbs)
# %%
labels = np.array(labels)
embeddings = torch.cat(embeddings, dim=0)
# %%
# Reducing dimensions with t-SNE
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
embeddings_2d = tsne.fit_transform(embeddings)
# plt.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1], alpha=0.5)
# plt.xlim([embeddings_2d[:, 0].min() - 1, embeddings_2d[:, 0].max() + 1])
# plt.ylim([embeddings_2d[:, 1].min() - 1, embeddings_2d[:, 1].max() + 1])
# plt.show()
# %%
# Create a color map from labels to colors
unique_labels = np.unique(labels)
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
label_to_color = dict(zip(unique_labels, colors))
# Plotting
plt.figure(figsize=(8, 6))
for label in unique_labels:
idx = (labels == label)
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
plt.title('2D t-SNE Visualization of Embeddings')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
# plt.xlim([embeddings_2d[:, 0].min() - 1, embeddings_2d[:, 0].max() + 1])
# plt.ylim([embeddings_2d[:, 1].min() - 1, embeddings_2d[:, 1].max() + 1])
plt.legend(title='Group')
plt.show()
# %%

View File

@ -0,0 +1,92 @@
# this code tries to analyze the embeddings of the encoder
# %%
import pandas as pd
import os
from inference import Embedder_bert
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
checkpoint_directory = 'classification_bert_pattern_desc_unit/checkpoint'
BATCH_SIZE = 512
fold = 1
print(f"Inference for fold {fold}")
# import test data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df = df[df['MDM']].reset_index(drop=True)
# get target data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
# assign labels
df['thing_property'] = df['thing'] + " " + df['property']
thing_property = df['thing_property'].to_list()
mdm_list = sorted(list(set(thing_property)))
def generate_labels(df, mdm_list):
output_list = []
for _, row in df.iterrows():
pattern = f"{row['thing_property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
output_list.append(index)
return output_list
df['labels'] = generate_labels(df, mdm_list)
# rank labels by counts
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
input_df = df.iloc[indices].reset_index(drop=True)
# %%
input_df
# %%
def run(step):
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
embedder = Embedder_bert(checkpoint_path)
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
embedder.create_embedding()
embeddings = embedder.embeddings
return embeddings
# %%
embeddings = (run(step=1200))
labels = input_df['labels']
# Reducing dimensions with t-SNE
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
embeddings_2d = tsne.fit_transform(embeddings)
# Create a color map from labels to colors
unique_labels = np.unique(labels)
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
label_to_color = dict(zip(unique_labels, colors))
# Plotting
plt.figure(figsize=(8, 6))
for label in unique_labels:
idx = (labels == label)
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
plt.title('2D t-SNE Visualization of Embeddings')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.legend(title='Group')
plt.show()
# %%

View File

@ -0,0 +1,89 @@
# this code tries to analyze the embeddings of the encoder
# %%
import pandas as pd
import os
from inference import Embedder_t5
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
checkpoint_directory = 'mapping_t5_complete_desc_unit/checkpoint'
BATCH_SIZE = 512
fold = 1
print(f"Inference for fold {fold}")
# import test data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df = df[df['MDM']].reset_index(drop=True)
# get target data
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
# assign labels
df['thing_property'] = df['thing'] + " " + df['property']
thing_property = df['thing_property'].to_list()
mdm_list = sorted(list(set(thing_property)))
def generate_labels(df, mdm_list):
output_list = []
for _, row in df.iterrows():
pattern = f"{row['thing_property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
output_list.append(index)
return output_list
df['labels'] = generate_labels(df, mdm_list)
# rank labels by counts
top_10_labels = df['labels'].value_counts()[0:10].index.to_list()
indices = df[df['labels'].isin(top_10_labels)].index.to_list()
input_df = df.iloc[indices].reset_index(drop=True)
# %%
def run(step):
checkpoint_path = os.path.join(checkpoint_directory, f'checkpoint_{step}')
embedder = Embedder_t5(checkpoint_path)
embedder.prepare_dataloader(input_df, batch_size=BATCH_SIZE, max_length=128)
embedder.create_embedding()
embeddings = embedder.embeddings
return embeddings
# %%
embeddings = (run(step=1200))
labels = input_df['labels']
# Reducing dimensions with t-SNE
tsne = TSNE(n_components=2, random_state=0, perplexity=5)
embeddings_2d = tsne.fit_transform(embeddings)
# Create a color map from labels to colors
unique_labels = np.unique(labels)
colors = plt.cm.jet(np.linspace(0, 1, len(unique_labels)))
label_to_color = dict(zip(unique_labels, colors))
# Plotting
plt.figure(figsize=(8, 6))
for label in unique_labels:
idx = (labels == label)
plt.scatter(embeddings_2d[idx, 0], embeddings_2d[idx, 1], color=label_to_color[label], label=label, alpha=0.7)
plt.title('2D t-SNE Visualization of Embeddings')
plt.xlabel('Component 1')
plt.ylabel('Component 2')
plt.legend(title='Group')
plt.show()
# %%

407
interpretation/inference.py Normal file
View File

@ -0,0 +1,407 @@
import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
AutoTokenizer,
AutoModelForSequenceClassification,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Inference():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def generate(self):
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
pred_generations = []
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list
class Embedder_t5():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
embeddings: list
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
self.embeddings = []
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def create_embedding(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
# Use the hidden state of the first token as the sequence representation
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
self.embeddings.append(pooled_output.to('cpu'))
self.embeddings = torch.cat(self.embeddings, dim=0)
class Embedder_bert():
tokenizer: AutoTokenizer
model: torch.nn.Module
dataloader: DataLoader
embeddings: list
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
self.embeddings = []
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained('google-bert/bert-base-cased', return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSequenceClassification.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def create_embedding(self):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
# get last layer
encoder_outputs = self.model.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# Use the hidden state of the first token as the sequence representation
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
self.embeddings.append(pooled_output.to('cpu'))
self.embeddings = torch.cat(self.embeddings, dim=0)

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log/

View File

@ -0,0 +1,216 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
DataCollatorForSeq2Seq,
Seq2SeqTrainer,
EarlyStoppingCallback,
Seq2SeqTrainingArguments,
TrainerCallback
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
class SaveModelCallback(TrainerCallback):
"""Custom callback to save model weights at specific intervals during training."""
def __init__(self, save_interval):
super().__init__()
self.save_interval = save_interval # save every 'save_interval' steps
def on_step_end(self, args, state, control, **kwargs):
"""This method is called at the end of each training step."""
# Check if it's time to save (based on global_step and save_interval)
if state.global_step % self.save_interval == 0 and state.global_step > 0:
# Path where the model should be saved
output_dir = f"{args.output_dir}/checkpoint_{state.global_step}"
model = kwargs['model']
model.save_pretrained(output_dir)
print(f"Model saved to {output_dir} at step {state.global_step}")
# outputs a list of dictionaries
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = {
'input' : f"{desc}{unit}",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
}
output_list.append(element)
return output_list
def create_split_dataset(fold):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
})
return combined_data
# function to perform training for a given fold
def train(fold):
save_path = 'checkpoint'
split_datasets = create_split_dataset(fold)
# prepare tokenizer
model_checkpoint = "t5-small"
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
text_target=target,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns=split_datasets["train"].column_names,
)
# https://github.com/huggingface/transformers/pull/28414
# model_checkpoint = "google/t5-efficient-tiny"
# device_map set to auto to force it to load contiguous weights
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
metric = evaluate.load("sacrebleu")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds,
skip_special_tokens=False)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels,
skip_special_tokens=False)
# Remove <PAD> tokens from decoded predictions and labels
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
# Some simple post-processing
# decoded_preds = [pred.strip() for pred in decoded_preds]
# decoded_labels = [[label.strip()] for label in decoded_labels]
# print(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": result["score"]}
# Generation Config
# from transformers import GenerationConfig
gen_config = model.generation_config
gen_config.max_length = 64
# compile
# model = torch.compile(model, backend="inductor", dynamic=True)
# Trainer
args = Seq2SeqTrainingArguments(
f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="no",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-3,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
max_steps=1200,
predict_with_generate=True,
bf16=True,
push_to_hub=False,
generation_config=gen_config,
remove_unused_columns=False,
)
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
callbacks=[SaveModelCallback(save_interval=200)]
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1]:
print(fold)
train(fold)