Chore: re-organized train folders to have standardized naming schemes

Feat: introduced BERT-based binary classification
This commit is contained in:
Richard Wong 2024-11-20 15:07:47 +09:00
parent 96e7394c59
commit 1f3970459f
50 changed files with 1710 additions and 84 deletions

View File

@ -8,5 +8,11 @@ mdm_list = sorted(list((set(full_df['pattern']))))
# %% # %%
mdm_list len(mdm_list)
# %%
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
tp_list = sorted(list(set(thing_property)))
# %%
len(tp_list)
# %% # %%

View File

@ -0,0 +1,13 @@
# %%
import pandas as pd
# %%
data_path = '../../data_import/exports/raw_data.csv'
df = pd.read_csv(data_path)
# %%
df
# %%
set(df['signal_type'])
# %%

View File

@ -0,0 +1,15 @@
# %%
import pandas as pd
# %%
data_path = '../../data_import/exports/raw_data.csv'
df = pd.read_csv(data_path)
# %%
df = df[df['MDM']].reset_index(drop=True)
# %%
set(df['pattern'])
# %%
set(df[df['pattern'] == 'GeneratorEngine# Power']['tag_description'].to_list())
# %%

View File

@ -1,106 +1,106 @@
# substitution mapping for descriptions # substitution mapping for descriptions
# Abbreviations and their replacements # Abbreviations and their replacements
desc_replacement_dict = { desc_replacement_dict = {
r'\bLIST\b\b': 'LIST', r'\bLIST\b': 'LIST',
r'\bList\b\b': 'LIST', r'\bList\b': 'LIST',
r'\bEXH\.\b': 'EXHAUST', r'\bEXH\.\b': 'EXHAUST',
r'\bEXH\b\b': 'EXHAUST', r'\bEXH\b': 'EXHAUST',
r'\bEXHAUST\.\b': 'EXHAUST', r'\bEXHAUST\.\b': 'EXHAUST',
r'\bExhaust\b\b': 'EXHAUST', r'\bExhaust\b': 'EXHAUST',
r'\bEXHAUST\b\b': 'EXHAUST', r'\bEXHAUST\b': 'EXHAUST',
r'\bTEMP\.\b': 'TEMPERATURE', r'\bTEMP\.\b': 'TEMPERATURE',
r'\bTEMP\b\b': 'TEMPERATURE', r'\bTEMP\b': 'TEMPERATURE',
r'\bTEMPERATURE\.\b': 'TEMPERATURE', r'\bTEMPERATURE\.\b': 'TEMPERATURE',
r'\bTEMPERATURE\b\b': 'TEMPERATURE', r'\bTEMPERATURE\b': 'TEMPERATURE',
r'\bW\.\b': 'WATER', r'\bW\.\b': 'WATER',
r'\bWATER\b\b': 'WATER', r'\bWATER\b': 'WATER',
r'\bCW\b\b': 'COOLING WATER', r'\bCW\b': 'COOLING WATER',
r'\bCYL\.\b': 'CYLINDER', r'\bCYL\.\b': 'CYLINDER',
r'\bCyl\b\b': 'CYLINDER', r'\bCyl\b': 'CYLINDER',
r'\bcyl\.\b': 'CYLINDER', r'\bcyl\.\b': 'CYLINDER',
r'\bCYL\b\b': 'CYLINDER', r'\bCYL\b': 'CYLINDER',
r'\bCYL(?=\d|\W|$)\b': 'CYLINDER', r'\bCYL(?=\d|\W|$)\b': 'CYLINDER',
r'\bcylinder\b\b': 'CYLINDER', r'\bcylinder\b': 'CYLINDER',
r'\bCYLINDER\b\b': 'CYLINDER', r'\bCYLINDER\b': 'CYLINDER',
r'\bCOOL\.\b': 'COOLING', r'\bCOOL\.\b': 'COOLING',
r'\bcool\.\b': 'COOLING', r'\bcool\.\b': 'COOLING',
r'\bcooling\b\b': 'COOLING', r'\bcooling\b': 'COOLING',
r'\bCOOLING\b\b': 'COOLING', r'\bCOOLING\b': 'COOLING',
r'\bcooler\b\b': 'COOLER', r'\bcooler\b': 'COOLER',
r'\bCOOLER\b\b': 'COOLER', r'\bCOOLER\b': 'COOLER',
r'\bScav\.\b': 'SCAVENGE', r'\bScav\.\b': 'SCAVENGE',
r'\bSCAV\.\b': 'SCAVENGE', r'\bSCAV\.\b': 'SCAVENGE',
r'\bINL\.\b': 'INLET', r'\bINL\.\b': 'INLET',
r'\binlet\b\b': 'INLET', r'\binlet\b': 'INLET',
r'\bINLET\b\b': 'INLET', r'\bINLET\b': 'INLET',
r'\bOUT\.\b': 'OUTLET', r'\bOUT\.\b': 'OUTLET',
r'\bOUTL\.\b': 'OUTLET', r'\bOUTL\.\b': 'OUTLET',
r'\boutlet\b\b': 'OUTLET', r'\boutlet\b': 'OUTLET',
r'\bOUTLET\b\b': 'OUTLET', r'\bOUTLET\b': 'OUTLET',
# bunker tank # bunker tank
r'\bBK\b': 'BUNKER', r'\bBK\b': 'BUNKER',
r'\bTK\b': 'TANK', r'\bTK\b': 'TANK',
# pressure # pressure
r'\bPRESS\b\b': 'PRESSURE', r'\bPRESS\b': 'PRESSURE',
r'\bPRESS\.\b': 'PRESSURE', r'\bPRESS\.\b': 'PRESSURE',
r'\bPress\.\b': 'PRESSURE', r'\bPress\.\b': 'PRESSURE',
r'\bpressure\b\b': 'PRESSURE', r'\bpressure\b': 'PRESSURE',
r'\bPRESSURE\b\b': 'PRESSURE', r'\bPRESSURE\b': 'PRESSURE',
# this is a special replacement - it is safe to replace PRS w/o checks # this is a special replacement - it is safe to replace PRS w/o checks
r'PRS\b': 'PRESSURE', r'PRS\b': 'PRESSURE',
r'\bCLR\b\b': 'CLEAR', r'\bCLR\b': 'CLEAR',
r'\bENG\.\b': 'ENGINE', r'\bENG\.\b': 'ENGINE',
r'\bENG\b\b': 'ENGINE', r'\bENG\b': 'ENGINE',
r'\bENGINE\b\b': 'ENGINE', r'\bENGINE\b': 'ENGINE',
r'\bEngine speed\b\b': 'ENGINE SPEED', r'\bEngine speed\b': 'ENGINE SPEED',
r'\bEngine running\b\b': 'ENGINE RUNNING', r'\bEngine running\b': 'ENGINE RUNNING',
r'\bEngine RPM pickup\b\b': 'ENGINE RPM PICKUP', r'\bEngine RPM pickup\b': 'ENGINE RPM PICKUP',
r'\bEngine room\b\b': 'ENGINE ROOM', r'\bEngine room\b': 'ENGINE ROOM',
# main engine # main engine
r'\bM/E\b': 'MAIN_ENGINE', r'\bM/E\b': 'MAIN_ENGINE',
r'\bM_E\b': 'MAIN_ENGINE', r'\bM_E\b': 'MAIN_ENGINE',
r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE', r'\bME(?=\d|\W|$)\b': 'MAIN_ENGINE',
r'\bMAIN ENGINE\b\b': 'MAIN_ENGINE', r'\bMAIN ENGINE\b': 'MAIN_ENGINE',
r'\bGen\b\b': 'GENERATOR_ENGINE', r'\bGen\b': 'GENERATOR_ENGINE',
# ensure that we substitute only for terms where following GE is num or special # ensure that we substitute only for terms where following GE is num or special
r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE', r'\bGE(?=\d|\W|$)\b': 'GENERATOR_ENGINE',
r'\bG/E\b': 'GENERATOR_ENGINE', r'\bG/E\b': 'GENERATOR_ENGINE',
r'\bG_E\b': 'GENERATOR_ENGINE', r'\bG_E\b': 'GENERATOR_ENGINE',
r'\bDG\b': 'GENERATOR_ENGINE', r'\bDG\b': 'GENERATOR_ENGINE',
r'\bD/G\b\b': 'GENERATOR_ENGINE', r'\bD/G\b': 'GENERATOR_ENGINE',
r'\bGEN\.\b': 'GENERATOR_ENGINE', r'\bGEN\.\b': 'GENERATOR_ENGINE',
r'\bGENERATOR ENGINE\B\b': 'GENERATOR_ENGINE', r'\bGENERATOR ENGINE\b': 'GENERATOR_ENGINE',
r'\b(\d+)MGE\b\b': r'NO\1 GENERATOR_ENGINE', r'\b(\d+)MGE\b': r'NO\1 GENERATOR_ENGINE',
r'\bGEN\.WIND\.TEMP\b\b': 'GENERATOR WINDING TEMPERATURE', r'\bGEN\.WIND\.TEMP\b': 'GENERATOR WINDING TEMPERATURE',
r'\bENGINE ROOM\b\b': 'ENGINE ROOM', r'\bENGINE ROOM\b': 'ENGINE ROOM',
r'\bE/R\b\b': 'ENGINE ROOM', r'\bE/R\b': 'ENGINE ROOM',
r'\bFLTR\b\b': 'FILTER', r'\bFLTR\b': 'FILTER',
# marine gas oil # marine gas oil
r'\bM\.G\.O\b\b': 'MARINE GAS OIL', r'\bM\.G\.O\b': 'MARINE GAS OIL',
r'\bMGO\b\b': 'MARINE GAS OIL', r'\bMGO\b': 'MARINE GAS OIL',
r'\bMDO\b\b': 'MARINE DIESEL OIL', r'\bMDO\b': 'MARINE DIESEL OIL',
# light fuel oil # light fuel oil
r'\bL\.F\.O\b\b': 'LIGHT FUEL OIL', r'\bL\.F\.O\b': 'LIGHT FUEL OIL',
r'\bLFO\b\b': 'LIGHT FUEL OIL', r'\bLFO\b': 'LIGHT FUEL OIL',
# heavy fuel oil # heavy fuel oil
r'\bHFO\b\b': 'HEAVY FUEL OIL', r'\bHFO\b': 'HEAVY FUEL OIL',
r'\bH\.F\.O\b\b': 'HEAVY FUEL OIL', r'\bH\.F\.O\b': 'HEAVY FUEL OIL',
# for remaining fuel oil that couldn't be substituted # for remaining fuel oil that couldn't be substituted
r'\bF\.O\b\b': 'FUEL OIL', r'\bF\.O\b': 'FUEL OIL',
r'\bFO\b\b': 'FUEL OIL', r'\bFO\b': 'FUEL OIL',
# lubricant # lubricant
r'\bLUB\.\b': 'LUBRICANT', r'\bLUB\.\b': 'LUBRICANT',
# lubricating oil # lubricating oil
r'\bL\.O\b\b': 'LUBRICATING OIL', r'\bL\.O\b': 'LUBRICATING OIL',
r'\bLO\b\b': 'LUBRICATING OIL', r'\bLO\b': 'LUBRICATING OIL',
# lubricating oil pressure # lubricating oil pressure
r'\bLO_PRESS\b\b': 'LUBRICATING OIL PRESSURE', r'\bLO_PRESS\b': 'LUBRICATING OIL PRESSURE',
r'\bLO_PRESSURE\b\b': 'LUBRICATING OIL PRESSURE', r'\bLO_PRESSURE\b': 'LUBRICATING OIL PRESSURE',
# temperature # temperature
r'\bL\.T\b\b': 'LOW TEMPERATURE', r'\bL\.T\b': 'LOW TEMPERATURE',
r'\bLT\b\b': 'LOW TEMPERATURE', r'\bLT\b': 'LOW TEMPERATURE',
r'\bH\.T\b\b': 'HIGH TEMPERATURE', r'\bH\.T\b': 'HIGH TEMPERATURE',
r'\bHT\b\b': 'HIGH TEMPERATURE', r'\bHT\b': 'HIGH TEMPERATURE',
# auxiliary boiler # auxiliary boiler
# replace these first before replacing AUXILIARY only # replace these first before replacing AUXILIARY only
r'\bAUX\.BOILER\b': 'AUXILIARY BOILER', r'\bAUX\.BOILER\b': 'AUXILIARY BOILER',
@ -108,27 +108,27 @@ desc_replacement_dict = {
r'\bAUX BLR\b': 'AUXILIARY BOILER', r'\bAUX BLR\b': 'AUXILIARY BOILER',
r'\bAUX\.\b': 'AUXILIARY ', r'\bAUX\.\b': 'AUXILIARY ',
# composite boiler # composite boiler
r'\bCOMP\. BOILER\b\b': 'COMPOSITE BOILER', r'\bCOMP\. BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP\.BOILER\b\b': 'COMPOSITE BOILER', r'\bCOMP\.BOILER\b': 'COMPOSITE BOILER',
r'\bCOMP BOILER\b\b': 'COMPOSITE BOILER', r'\bCOMP BOILER\b': 'COMPOSITE BOILER',
r'\bWIND\.\b': 'WINDING', r'\bWIND\.\b': 'WINDING',
r'\bWINDING\b\b': 'WINDING', r'\bWINDING\b': 'WINDING',
r'\bC\.S\.W\b\b': 'CSW', r'\bC\.S\.W\b': 'CSW',
r'\bCSW\b\b': 'CSW', r'\bCSW\b': 'CSW',
r'\bVLOT\.\b': 'VOLTAGE', r'\bVLOT\.\b': 'VOLTAGE',
r'\bVOLTAGE\b\b': 'VOLTAGE', r'\bVOLTAGE\b': 'VOLTAGE',
r'\bVOLT\.\b': 'VOLTAGE', r'\bVOLT\.\b': 'VOLTAGE',
r'\bFREQ\.\b': 'FREQUENCY', r'\bFREQ\.\b': 'FREQUENCY',
r'\bFREQUENCY\b\b': 'FREQUENCY', r'\bFREQUENCY\b': 'FREQUENCY',
r'\bCURR\.\b': 'CURRENT', r'\bCURR\.\b': 'CURRENT',
r'\bCURRENT\b\b': 'CURRENT', r'\bCURRENT\b': 'CURRENT',
r'\bTCA\b\b': 'TURBOCHARGER', r'\bTCA\b': 'TURBOCHARGER',
r'\bTCB\b\b': 'TURBOCHARGER', r'\bTCB\b': 'TURBOCHARGER',
r'\bT/C\b': 'TURBOCHARGER', r'\bT/C\b': 'TURBOCHARGER',
r'\bT_C\b': 'TURBOCHARGER', r'\bT_C\b': 'TURBOCHARGER',
r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER', r'\bTC(?=\d|\W|$)\b': 'TURBOCHARGER',
r'\bTURBOCHAGER\b\b': 'TURBOCHARGER', r'\bTURBOCHAGER\b': 'TURBOCHARGER',
r'\bTURBOCHARGER\b\b': 'TURBOCHARGER', r'\bTURBOCHARGER\b': 'TURBOCHARGER',
# misc spelling errors # misc spelling errors
r'\bOPERATOIN\b': 'OPERATION', r'\bOPERATOIN\b': 'OPERATION',
# wrongly attached terms # wrongly attached terms

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,31 @@
********************************************************************************
Fold: 1
Accuracy: 0.95342
F1 Score: 0.91344
Precision: 0.91643
Recall: 0.91052
********************************************************************************
Fold: 2
Accuracy: 0.95402
F1 Score: 0.92950
Precision: 0.92122
Recall: 0.93848
********************************************************************************
Fold: 3
Accuracy: 0.95200
F1 Score: 0.92726
Precision: 0.91825
Recall: 0.93712
********************************************************************************
Fold: 4
Accuracy: 0.96473
F1 Score: 0.92708
Precision: 0.91566
Recall: 0.93950
********************************************************************************
Fold: 5
Accuracy: 0.95605
F1 Score: 0.92244
Precision: 0.91755
Recall: 0.92754

View File

@ -0,0 +1,214 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
# %%
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
in_mdm_label = int(row['MDM'])
element = {
'text' : f"{desc}{unit}",
'label': in_mdm_label,
}
output_list.append(element)
return output_list
def create_dataset(fold):
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
return test_dataset
# %%
# function to perform training for a given fold
def test(fold):
test_dataset = create_dataset(fold)
# prepare tokenizer
checkpoint_directory = f'../checkpoint_fold_{fold}'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 64
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=2)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
BATCH_SIZE = 64
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
with open("output.txt", "a") as f:
print('*' * 80, file=f)
print(f'Fold: {fold}', file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
test(fold)

View File

@ -0,0 +1,210 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
# full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# %%
id2label = {0: False, 1: True}
label2id = {False: 0, True: 1}
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
in_mdm_label = int(row['MDM'])
element = {
'text' : f"{desc}{unit}",
'label': in_mdm_label,
}
output_list.append(element)
return output_list
def create_split_dataset(fold):
# train
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
# reconstruct full training data with non-mdm data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
ships_list = list(set(test_df['ships_idx']))
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}'
split_datasets = create_split_dataset(fold)
# prepare tokenizer
model_checkpoint = "distilbert/distilbert-base-uncased"
# model_checkpoint = 'google-bert/bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=2)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=40,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%

View File

@ -10,7 +10,7 @@ from fuzzywuzzy import fuzz
################## ##################
# global parameters # global parameters
DIAGNOSTIC = False DIAGNOSTIC = False
THRESHOLD = 0.85 THRESHOLD = 0.90
FUZZY_SIM_THRESHOLD=95 FUZZY_SIM_THRESHOLD=95
checkpoint_directory = "../../train/classification_bert_desc" checkpoint_directory = "../../train/classification_bert_desc"
@ -264,9 +264,9 @@ def run_selection(fold):
# Compute metrics # Compute metrics
accuracy = accuracy_score(y_true, y_pred) accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro') f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='macro') precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro') recall = recall_score(y_true, y_pred)
# Print the results # Print the results
print(f'Accuracy: {accuracy:.5f}') print(f'Accuracy: {accuracy:.5f}')
@ -287,9 +287,9 @@ def run_selection(fold):
# Compute metrics # Compute metrics
accuracy = accuracy_score(y_true, y_pred) accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro') f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred, average='macro') precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro') recall = recall_score(y_true, y_pred)
# Print the results # Print the results
print(f'Accuracy: {accuracy:.5f}') print(f'Accuracy: {accuracy:.5f}')

View File

@ -0,0 +1,4 @@
# one-class classification by similarity
Purpose: using only Ship Domain attributes, we want to find if the data belongs
to MDM

View File

@ -0,0 +1,134 @@
# %%
import pandas as pd
from utils import Retriever, cosine_similarity_chunked
import os
import glob
import numpy as np
from tqdm import tqdm
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
##################################################
# helper functions
# the following function takes in a full cos_sim_matrix
# condition_source: boolean selectors of the source embedding
# condition_target: boolean selectors of the target embedding
def find_closest(cos_sim_matrix, condition_source, condition_target):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
# we select top k here
# Get the indices of the top k maximum values along axis 1
top_k = 3
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# note that top_k_indices is a nested list because of the 2d nature of the matrix
# the result is flipped
top_k_indices[0] = top_k_indices[0][::-1]
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
return top_k_indices, top_k_values
class Embedder():
input_df: pd.DataFrame
fold: int
def __init__(self, input_df):
self.input_df = input_df
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
element = f"{desc}{unit}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
retriever_train = Retriever(train_data, checkpoint_path)
retriever_train.make_embedding(batch_size=64)
return retriever_train.embeddings.to('cpu')
def run_similarity_classifier(fold):
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
test_df = pd.read_csv(data_path, skipinitialspace=True)
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
test_embedder = Embedder(input_df=test_df)
test_embeds = test_embedder.make_embedding(checkpoint_path)
def compute_top_k(select_idx):
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
_, top_k_values = find_closest(
cos_sim_matrix=cos_sim_matrix,
condition_source=condition_source,
condition_target=condition_target)
return top_k_values[0][0]
# test embeds are inputs since we are looking back at train data
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
sim_list = []
for select_idx in tqdm(test_df.index):
top_sim_value = compute_top_k(select_idx)
sim_list.append(top_sim_value)
# analysis 1: using threshold to perform find-back prediction success
threshold = 0.90
predict_list = [ elem > threshold for elem in sim_list ]
y_true = test_df['MDM'].to_list()
y_pred = predict_list
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
# %%
for fold in [1,2,3,4,5]:
run_similarity_classifier(fold)

View File

@ -44,7 +44,7 @@ class Embedder():
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv" data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True) train_df = pd.read_csv(data_path, skipinitialspace=True)
checkpoint_directory = "../../train/classification_bert" checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}') directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths # Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number> # path is usually checkpoint_fold_1/checkpoint-<step number>
@ -74,7 +74,7 @@ def find_closest(cos_sim_matrix, condition_source, condition_target):
# except we are subsetting 2D matrix (row, column) # except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)] subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
# we select top k here # we select top k here
# Get the indices of the top 5 maximum values along axis 1 # Get the indices of the top k maximum values along axis 1
top_k = 3 top_k = 3
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# note that top_k_indices is a nested list because of the 2d nature of the matrix # note that top_k_indices is a nested list because of the 2d nature of the matrix
@ -168,7 +168,7 @@ for select_idx in tqdm(test_df.index):
# analysis 1: using threshold to perform find-back prediction success # analysis 1: using threshold to perform find-back prediction success
# %% # %%
threshold = 0.9 threshold = 0.95
predict_list = [ elem > threshold for elem in sim_list ] predict_list = [ elem > threshold for elem in sim_list ]
# %% # %%

View File

@ -8,5 +8,21 @@ Each folder contains a training variation.
After training, each folder contains the checkpoint files for each fold. After training, each folder contains the checkpoint files for each fold.
`mapping` directory contains the code to run the model on test data and also The folders are named with the following convention:
produce the csv outputs.
`<method_type>`\_`<model_type>`\_`<prediction_type>`\_`<included_fields>`
e.g.
"classification_bert_complete_desc_unit",
which means: folder to perform classification using the bert model, predicting
for the complete thing+property output using description and unit
To train, just run `python train.py`
The inference code is within a folder `classification_prediction` or
`mapping_prediction`.
Note: the classification\_t5 folders are depracated in favor of the BERT-based
classification models.

View File

@ -0,0 +1,31 @@
********************************************************************************
Fold: 1
Accuracy: 0.76337
F1 Score: 0.37980
Precision: 0.36508
Recall: 0.41523
********************************************************************************
Fold: 2
Accuracy: 0.77430
F1 Score: 0.40473
Precision: 0.39528
Recall: 0.43303
********************************************************************************
Fold: 3
Accuracy: 0.77259
F1 Score: 0.39538
Precision: 0.37761
Recall: 0.43633
********************************************************************************
Fold: 4
Accuracy: 0.77545
F1 Score: 0.39792
Precision: 0.38636
Recall: 0.43003
********************************************************************************
Fold: 5
Accuracy: 0.74897
F1 Score: 0.38827
Precision: 0.37680
Recall: 0.42382

View File

@ -0,0 +1,241 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
# unit = f"<UNIT>{row['unit']}<UNIT>"
pattern = f"{row['thing'] + row['property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
index = -1
element = {
'text' : f"{desc}",
'label': index,
}
output_list.append(element)
return output_list
def create_dataset(fold, mdm_list):
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
# we only use the mdm subset
test_df = test_df[test_df['MDM']].reset_index(drop=True)
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
return test_dataset
# %%
# function to perform training for a given fold
def test(fold):
test_dataset = create_dataset(fold, mdm_list)
# prepare tokenizer
checkpoint_directory = f'../checkpoint_fold_{fold}'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 64
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
BATCH_SIZE = 64
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
with open("output.txt", "a") as f:
print('*' * 80, file=f)
print(f'Fold: {fold}', file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
test(fold)

View File

@ -0,0 +1,216 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"{row['tag_description']}"
pattern = f"{row['thing'] + row['property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
element = {
'text' : f"{desc}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
# model_checkpoint = "distilbert/distilbert-base-uncased"
model_checkpoint = 'google-bert/bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%

View File

@ -0,0 +1,31 @@
********************************************************************************
Fold: 1
Accuracy: 0.77946
F1 Score: 0.40686
Precision: 0.39833
Recall: 0.43814
********************************************************************************
Fold: 2
Accuracy: 0.78271
F1 Score: 0.42730
Precision: 0.42002
Recall: 0.45670
********************************************************************************
Fold: 3
Accuracy: 0.78715
F1 Score: 0.41108
Precision: 0.39829
Recall: 0.44992
********************************************************************************
Fold: 4
Accuracy: 0.79115
F1 Score: 0.41810
Precision: 0.40095
Recall: 0.45760
********************************************************************************
Fold: 5
Accuracy: 0.76271
F1 Score: 0.41752
Precision: 0.41156
Recall: 0.44899

View File

@ -0,0 +1,241 @@
# %%
# from datasets import load_from_disk
import os
import glob
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from torch.utils.data import DataLoader
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
from tqdm import tqdm
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
pattern = f"{row['thing'] + row['property']}"
try:
index = mdm_list.index(pattern)
except ValueError:
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_dataset(fold, mdm_list):
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
test_df = pd.read_csv(data_path, skipinitialspace=True)
# we only use the mdm subset
test_df = test_df[test_df['MDM']].reset_index(drop=True)
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
return test_dataset
# %%
# function to perform training for a given fold
def test(fold):
test_dataset = create_dataset(fold, mdm_list)
# prepare tokenizer
checkpoint_directory = f'../checkpoint_fold_{fold}'
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
# %%
# compute max token length
max_length = 0
for sample in test_dataset['text']:
# Tokenize the sample and get the length
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
length = len(input_ids)
# Update max_length if this sample is longer
if length > max_length:
max_length = length
print(max_length)
# %%
max_length = 64
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
# truncation=True,
padding='max_length'
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
# %%
# compute metrics
# metric = evaluate.load("accuracy")
#
#
# def compute_metrics(eval_preds):
# preds, labels = eval_preds
# preds = np.argmax(preds, axis=1)
# return metric.compute(predictions=preds, references=labels)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
model = model.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
pred_labels = []
actual_labels = []
BATCH_SIZE = 64
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
for batch in tqdm(dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
actual_labels.extend(batch['label'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
# Perform inference
with torch.no_grad():
logits = model(
input_ids,
attention_mask).logits
predicted_class_ids = logits.argmax(dim=1).to("cpu")
pred_labels.extend(predicted_class_ids)
pred_labels = [tensor.item() for tensor in pred_labels]
# %%
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
y_true = actual_labels
y_pred = pred_labels
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
with open("output.txt", "a") as f:
print('*' * 80, file=f)
print(f'Fold: {fold}', file=f)
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=f)
print(f'F1 Score: {f1:.5f}', file=f)
print(f'Precision: {precision:.5f}', file=f)
print(f'Recall: {recall:.5f}', file=f)
# %%
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
test(fold)

View File

@ -0,0 +1,217 @@
# %%
# from datasets import load_from_disk
import os
os.environ['NCCL_P2P_DISABLE'] = '1'
os.environ['NCCL_IB_DISABLE'] = '1'
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
DataCollatorWithPadding,
Trainer,
EarlyStoppingCallback,
TrainingArguments
)
import evaluate
import numpy as np
import pandas as pd
# import matplotlib.pyplot as plt
from datasets import Dataset, DatasetDict
torch.set_float32_matmul_precision('high')
# %%
# we need to create the mdm_list
# import the full mdm-only file
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
# rather than use pattern, we use the real thing and property
# mdm_list = sorted(list((set(full_df['pattern']))))
thing_property = full_df['thing'] + full_df['property']
thing_property = thing_property.to_list()
mdm_list = sorted(list(set(thing_property)))
# %%
id2label = {}
label2id = {}
for idx, val in enumerate(mdm_list):
id2label[idx] = val
label2id[val] = idx
# %%
# outputs a list of dictionaries
# processes dataframe into lists of dictionaries
# each element maps input to output
# input: tag_description
# output: class label
def process_df_to_dict(df, mdm_list):
output_list = []
for _, row in df.iterrows():
desc = f"{row['tag_description']}"
pattern = f"{row['thing'] + row['property']}"
unit = f"<UNIT>{row['unit']}<UNIT>"
try:
index = mdm_list.index(pattern)
except ValueError:
print("Error: value not found in MDM list")
index = -1
element = {
'text' : f"{desc}{unit}",
'label': index,
}
output_list.append(element)
return output_list
def create_split_dataset(fold, mdm_list):
# train
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# valid
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
validation_df = pd.read_csv(data_path, skipinitialspace=True)
combined_data = DatasetDict({
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
})
return combined_data
# %%
# function to perform training for a given fold
def train(fold):
save_path = f'checkpoint_fold_{fold}'
split_datasets = create_split_dataset(fold, mdm_list)
# prepare tokenizer
# model_checkpoint = "distilbert/distilbert-base-uncased"
model_checkpoint = 'google-bert/bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# Add the additional special tokens to the tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
max_length = 120
# given a dataset entry, run it through the tokenizer
def preprocess_function(example):
input = example['text']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = tokenizer(
input,
max_length=max_length,
truncation=True,
padding=True
)
return model_inputs
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
tokenized_datasets = split_datasets.map(
preprocess_function,
batched=True,
num_proc=8,
remove_columns="text",
)
# %% temp
# tokenized_datasets['train'].rename_columns()
# %%
# create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# %%
# compute metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
preds = np.argmax(preds, axis=1)
return metric.compute(predictions=preds, references=labels)
# %%
# create id2label and label2id
# %%
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint,
num_labels=len(mdm_list),
id2label=id2label,
label2id=label2id)
# important! after extending tokens vocab
model.resize_token_embeddings(len(tokenizer))
# model = torch.compile(model, backend="inductor", dynamic=True)
# %%
# Trainer
training_args = TrainingArguments(
output_dir=f"{save_path}",
# eval_strategy="epoch",
eval_strategy="no",
logging_dir="tensorboard-log",
logging_strategy="epoch",
# save_strategy="epoch",
load_best_model_at_end=False,
learning_rate=1e-5,
per_device_train_batch_size=64,
per_device_eval_batch_size=64,
auto_find_batch_size=False,
ddp_find_unused_parameters=False,
weight_decay=0.01,
save_total_limit=1,
num_train_epochs=80,
bf16=True,
push_to_hub=False,
remove_unused_columns=False,
)
trainer = Trainer(
model,
training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
# uncomment to load training from checkpoint
# checkpoint_path = 'default_40_1/checkpoint-5600'
# trainer.train(resume_from_checkpoint=checkpoint_path)
trainer.train()
# execute training
for fold in [1,2,3,4,5]:
print(fold)
train(fold)
# %%

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -0,0 +1,2 @@
checkpoint*
tensorboard-log

View File

@ -1,3 +1,3 @@
# translation # translation
These files were from the GRS paper. These codes will not be used. This section is depracated in favor of the `train` folder.