Feat: tuned selection_with_pattern to perform better
This commit is contained in:
parent
7699201cb8
commit
96e7394c59
|
@ -1 +1,2 @@
|
|||
__pycache__
|
||||
output.txt
|
||||
|
|
|
@ -1,56 +0,0 @@
|
|||
|
||||
********************************************************************************
|
||||
Statistics for fold 1
|
||||
tp: 1792
|
||||
tn: 10533
|
||||
fp: 428
|
||||
fn: 321
|
||||
fold: 1
|
||||
accuracy: 0.9427107235735047
|
||||
f1_score: 0.827140549273021
|
||||
precision: 0.8072072072072072
|
||||
recall: 0.8480832938949361
|
||||
********************************************************************************
|
||||
Statistics for fold 2
|
||||
tp: 1875
|
||||
tn: 8189
|
||||
fp: 393
|
||||
fn: 265
|
||||
fold: 2
|
||||
accuracy: 0.9386308524529006
|
||||
f1_score: 0.8507259528130672
|
||||
precision: 0.8267195767195767
|
||||
recall: 0.8761682242990654
|
||||
********************************************************************************
|
||||
Statistics for fold 3
|
||||
tp: 1831
|
||||
tn: 7455
|
||||
fp: 408
|
||||
fn: 161
|
||||
fold: 3
|
||||
accuracy: 0.9422628107559614
|
||||
f1_score: 0.8655164263767431
|
||||
precision: 0.8177757927646271
|
||||
recall: 0.9191767068273092
|
||||
********************************************************************************
|
||||
Statistics for fold 4
|
||||
tp: 1909
|
||||
tn: 12866
|
||||
fp: 483
|
||||
fn: 193
|
||||
fold: 4
|
||||
accuracy: 0.9562487864863116
|
||||
f1_score: 0.8495772140631954
|
||||
precision: 0.7980769230769231
|
||||
recall: 0.9081826831588963
|
||||
********************************************************************************
|
||||
Statistics for fold 5
|
||||
tp: 1928
|
||||
tn: 10359
|
||||
fp: 427
|
||||
fn: 255
|
||||
fold: 5
|
||||
accuracy: 0.9474130619168787
|
||||
f1_score: 0.8497135301895108
|
||||
precision: 0.818683651804671
|
||||
recall: 0.8831882730187814
|
|
@ -3,11 +3,11 @@ import os
|
|||
import glob
|
||||
|
||||
# directory for checkpoints
|
||||
checkpoint_directory = '../../train/baseline'
|
||||
checkpoint_directory = '../../train/mapping_with_unit'
|
||||
|
||||
def select(fold):
|
||||
# import test data
|
||||
data_path = f"../../train/mapping/exports/result_group_{fold}.csv"
|
||||
data_path = f"../../train/mapping_with_unit/mapping_prediction/exports/result_group_{fold}.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
|
@ -43,26 +43,6 @@ def select(fold):
|
|||
|
||||
df = data_mapping
|
||||
|
||||
# we can save the t5 generation output here
|
||||
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
|
||||
|
||||
|
||||
|
||||
# condition1 = df['MDM']
|
||||
# condition2 = df['p_MDM']
|
||||
|
||||
# condition_correct_thing = df['p_thing'] == df['thing']
|
||||
# condition_correct_property = df['p_property'] == df['property']
|
||||
# match = sum(condition1 & condition2)
|
||||
# fn = sum(condition1 & ~condition2)
|
||||
# prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
|
||||
|
||||
# print("mdm match predicted mdm: ", match) # 56 - false negative
|
||||
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
|
||||
# print("total mdm: ", sum(condition1)) # 2113
|
||||
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
|
||||
# print("correct mdm predicted", prediction_mdm_correct)
|
||||
|
||||
|
||||
# selection
|
||||
###########################################
|
||||
|
|
|
@ -5,39 +5,18 @@ import glob
|
|||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
import numpy as np
|
||||
from utils import BertEmbedder, cosine_similarity_chunked
|
||||
from fuzzywuzzy import fuzz
|
||||
|
||||
##################
|
||||
# global parameters
|
||||
DIAGNOSTIC = False
|
||||
THRESHOLD = 0.85
|
||||
FUZZY_SIM_THRESHOLD=95
|
||||
checkpoint_directory = "../../train/classification_bert_desc"
|
||||
|
||||
###################
|
||||
# %%
|
||||
# directory for checkpoints
|
||||
checkpoint_directory = '../../train/mapping_pattern'
|
||||
|
||||
fold = 5
|
||||
# import test data
|
||||
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
|
||||
# %%
|
||||
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
|
||||
|
||||
# %%
|
||||
# obtain the full mdm_list
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
|
||||
|
||||
# %%
|
||||
# we have to split into per-ship analysis
|
||||
ships_list = sorted(list(set(df['ships_idx'])))
|
||||
# %%
|
||||
# for ship_idx in ships_list:
|
||||
ship_idx = 1009 # choose an example ship
|
||||
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
|
||||
|
||||
# helper functions
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
@ -65,101 +44,6 @@ class Embedder():
|
|||
|
||||
|
||||
|
||||
# %%
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=ship_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||
|
||||
|
||||
|
||||
# The general idea:
|
||||
# step 1: keep only pattern generations that belong to mdm list
|
||||
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||||
# step 2: loop through the mdm list and isolate data in both train and test that
|
||||
# belong to the same pattern class
|
||||
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||||
# -> so we have to find which candidate is most similar to the training data
|
||||
|
||||
# it is very tricky to keep track of classification across multiple stages so we
|
||||
# will use a boolean answer list
|
||||
|
||||
# %%
|
||||
answer_list = np.ones(len(ship_df), dtype=bool)
|
||||
|
||||
##########################################
|
||||
# %%
|
||||
# STEP 1
|
||||
# we want to loop through the the ship_df and find which ones match our full_mdm_list
|
||||
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
|
||||
# we assign only those that are False to our answer list
|
||||
# right now the 2 arrays are basically equal
|
||||
answer_list[~pattern_match_mask] = False
|
||||
|
||||
# %% TEMP
|
||||
print('proportion belonging to mdm classes', sum(pattern_match_mask)/len(pattern_match_mask))
|
||||
|
||||
# %% TEMP
|
||||
y_true = ship_df['MDM'].to_list()
|
||||
y_pred = pattern_match_mask
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
|
||||
# we can see that the accuracy is not good
|
||||
# %%
|
||||
#########################################
|
||||
# STEP 2
|
||||
# we want to go through each mdm class label
|
||||
# but we do not want to make subsets of dataframes
|
||||
# we will make heavy use of boolean masks
|
||||
|
||||
# we want to identify per-ship mdm classes
|
||||
ship_mdm_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
|
||||
|
||||
# %%
|
||||
len(ship_mdm_classes)
|
||||
|
||||
# %%
|
||||
for idx,select_class in enumerate(ship_mdm_classes):
|
||||
print(idx, len(ship_df[ship_df['p_pattern'] == select_class]))
|
||||
|
||||
# %%
|
||||
select_class = ship_mdm_classes[22]
|
||||
sample_df = ship_df[ship_df['p_pattern'] == select_class]
|
||||
|
||||
# %%
|
||||
# we need to set all idx of chosen entries as False in answer_list
|
||||
selected_idx_list = sample_df.index.to_list()
|
||||
answer_list[selected_idx_list] = False
|
||||
|
||||
# %%
|
||||
# because we have variants of a tag_description, we cannot choose 1 from the
|
||||
# given candidates we have to first group the candidates, and then choose which
|
||||
# group is most similar
|
||||
|
||||
# %%
|
||||
from fuzzywuzzy import fuzz
|
||||
|
||||
# the purpose of this function is to group the strings that are similar to each other
|
||||
# we need to form related groups of inputs
|
||||
def group_similar_strings(obj_list, threshold=80):
|
||||
|
@ -170,29 +54,16 @@ def group_similar_strings(obj_list, threshold=80):
|
|||
# tuple is (idx, string)
|
||||
if obj in processed_strings:
|
||||
continue
|
||||
|
||||
# Find all strings similar to the current string above the threshold
|
||||
similar_strings = [s for s in obj_list if s[1] != obj[1] and fuzz.ratio(obj[1], s[1]) >= threshold]
|
||||
|
||||
# Add the original string to the similar group
|
||||
similar_group = [obj] + similar_strings
|
||||
|
||||
# Mark all similar strings as processed
|
||||
processed_strings.update(similar_group)
|
||||
|
||||
# Add the group to the list of groups
|
||||
groups.append(similar_group)
|
||||
|
||||
return groups
|
||||
|
||||
# Example usage
|
||||
string_list = sample_df['tag_description'].to_list()
|
||||
index_list = sample_df.index.to_list()
|
||||
obj_list = list(zip(index_list, string_list))
|
||||
groups = group_similar_strings(obj_list, threshold=90)
|
||||
print(groups)
|
||||
|
||||
# %%
|
||||
# this function takes in groups of related terms and create candidate entries
|
||||
def make_candidates(groups):
|
||||
candidates = []
|
||||
|
@ -203,21 +74,6 @@ def make_candidates(groups):
|
|||
candidates.append(id_of_tuple)
|
||||
return candidates
|
||||
|
||||
# %%
|
||||
test_candidates = make_candidates(groups)
|
||||
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
|
||||
test_candidates_mask[test_candidates] = True
|
||||
|
||||
# %%
|
||||
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
|
||||
|
||||
# %%
|
||||
# we need to make the cos_sim_matrix
|
||||
# for that, we need to generate the embeddings of the ship_df (test embedding)
|
||||
# and the train_df (train embeddin)
|
||||
|
||||
# we then use the selection function using the given mask to choose the most
|
||||
# appropriate candidate
|
||||
|
||||
# the selection function takes in the full cos_sim_matrix then subsets the
|
||||
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
||||
|
@ -240,22 +96,212 @@ def selection(cos_sim_matrix, source_mask, target_mask):
|
|||
y_scores = np.mean(top_k_values, axis=1)
|
||||
max_idx = np.argmax(y_scores)
|
||||
max_score = y_scores[max_idx]
|
||||
|
||||
|
||||
return max_idx, max_score
|
||||
|
||||
|
||||
|
||||
####################
|
||||
# global level
|
||||
# %%
|
||||
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||||
# obtain the full mdm_list
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
|
||||
|
||||
|
||||
#####################
|
||||
# fold level
|
||||
|
||||
def run_selection(fold):
|
||||
|
||||
# set the fold
|
||||
# import test data
|
||||
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
|
||||
|
||||
# get target data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# generate your embeddings
|
||||
# checkpoint_directory defined at global level
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
# we can generate the train embeddings once and re-use for every ship
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
|
||||
# create global_answer array
|
||||
# the purpose of this array is to track the classification state at the global
|
||||
# level
|
||||
global_answer = np.zeros(len(df), dtype=bool)
|
||||
|
||||
|
||||
#############################
|
||||
# ship level
|
||||
# we have to split into per-ship analysis
|
||||
ships_list = sorted(list(set(df['ships_idx'])))
|
||||
for ship_idx in ships_list:
|
||||
# ship_idx = 1001 # choose an example ship
|
||||
|
||||
ship_df = df[df['ships_idx'] == ship_idx]
|
||||
# required to map local ship_answer array to global_answer array
|
||||
map_local_index_to_global_index = ship_df.index.to_numpy()
|
||||
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
|
||||
|
||||
# generate new embeddings for each ship
|
||||
test_embedder = Embedder(input_df=ship_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
# generate the cosine sim matrix
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||
|
||||
##############################
|
||||
# selection level
|
||||
# The general idea:
|
||||
# step 1: keep only pattern generations that belong to mdm list
|
||||
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||||
# step 2: loop through the mdm list and isolate data in both train and test that
|
||||
# belong to the same pattern class
|
||||
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||||
# -> so we have to find which candidate is most similar to the training data
|
||||
|
||||
# it is very tricky to keep track of classification across multiple stages so we
|
||||
# will use a boolean answer list
|
||||
|
||||
# initialize the local answer list
|
||||
ship_answer_list = np.ones(len(ship_df), dtype=bool)
|
||||
|
||||
###########
|
||||
# STEP 1
|
||||
# we want to loop through the generated class labels and find which ones match
|
||||
# our pattern list
|
||||
|
||||
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
|
||||
# we assign only those that are False to our answer list
|
||||
# right now the 2 arrays are basically equal
|
||||
ship_answer_list[~pattern_match_mask] = False
|
||||
|
||||
###########
|
||||
# STEP 2
|
||||
# we now go through each class found in our generated set
|
||||
|
||||
# we want to identify per-ship mdm classes
|
||||
ship_predicted_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
|
||||
|
||||
# this function performs the selection given a class
|
||||
# it takes in the cos_sim_matrix
|
||||
# it returns the selection by mutating the answer_list
|
||||
# it sets all relevant idxs to False initially, then sets the selected values to True
|
||||
def selection_for_class(select_class, cos_sim_matrix, answer_list):
|
||||
|
||||
# separate the global variable from function variable
|
||||
answer_list = answer_list.copy()
|
||||
sample_df = ship_df[ship_df['p_pattern'] == select_class]
|
||||
|
||||
# we need to set all idx of chosen entries as False in answer_list
|
||||
selected_idx_list = sample_df.index.to_list()
|
||||
answer_list[selected_idx_list] = False
|
||||
|
||||
# basic assumption check
|
||||
|
||||
# group related inputs by description similarity
|
||||
string_list = sample_df['tag_description'].to_list()
|
||||
index_list = sample_df.index.to_list()
|
||||
obj_list = list(zip(index_list, string_list))
|
||||
# groups is a list of list, where each list is composed of a
|
||||
# (idx, string) tuple
|
||||
groups = group_similar_strings(obj_list, threshold=FUZZY_SIM_THRESHOLD)
|
||||
|
||||
# generate the masking arrays for both test and train embeddings
|
||||
# we select a tuple from each group, and use that as a candidate for selection
|
||||
test_candidates = make_candidates(groups)
|
||||
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
|
||||
test_candidates_mask[test_candidates] = True
|
||||
# we make candidates to compare against in the data sharing the same class
|
||||
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
|
||||
|
||||
# perform selection
|
||||
# it returns the group index that is most likely
|
||||
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||||
|
||||
# consolidate all idx's in the same group
|
||||
chosen_group = groups[max_idx]
|
||||
chosen_idx_list = [tuple[0] for tuple in chosen_group]
|
||||
|
||||
|
||||
# before doing this, we have to use the max_score and evaluate if its close enough
|
||||
if max_score > THRESHOLD:
|
||||
answer_list[chosen_idx_list] = True
|
||||
|
||||
return answer_list
|
||||
|
||||
|
||||
# we choose one mdm class
|
||||
for select_class in ship_predicted_classes:
|
||||
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
|
||||
|
||||
# we want to write back to global_answer
|
||||
# first we convert local indices to global indices
|
||||
local_indices = np.where(ship_answer_list)[0]
|
||||
global_indices = map_local_index_to_global_index[local_indices]
|
||||
global_answer[global_indices] = True
|
||||
|
||||
|
||||
if DIAGNOSTIC:
|
||||
# evaluation at per-ship level
|
||||
y_true = ship_df['MDM'].to_list()
|
||||
y_pred = ship_answer_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
print(f'F1 Score: {f1:.5f}')
|
||||
print(f'Precision: {precision:.5f}')
|
||||
print(f'Recall: {recall:.5f}')
|
||||
|
||||
|
||||
|
||||
y_true = df['MDM'].to_list()
|
||||
y_pred = global_answer
|
||||
|
||||
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||
print(f"tp: {tp}")
|
||||
print(f"tn: {tn}")
|
||||
print(f"fp: {fp}")
|
||||
print(f"fn: {fn}")
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred, average='macro')
|
||||
precision = precision_score(y_true, y_pred, average='macro')
|
||||
recall = recall_score(y_true, y_pred, average='macro')
|
||||
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}')
|
||||
print(f'F1 Score: {f1:.5f}')
|
||||
print(f'Precision: {precision:.5f}')
|
||||
print(f'Recall: {recall:.5f}')
|
||||
|
||||
|
||||
# %%
|
||||
# after obtaining best group, we set all candidates of the group as True
|
||||
chosen_group = groups[max_idx]
|
||||
chosen_idx = [tuple[0] for tuple in chosen_group]
|
||||
|
||||
# %%
|
||||
# before doing this, we have to use the max_score and evaluate if its close enough
|
||||
THRESHOLD = 0.8
|
||||
if max_score > THRESHOLD:
|
||||
answer_list[chosen_idx] = True
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(f'Perform selection for fold {fold}')
|
||||
run_selection(fold)
|
||||
|
||||
|
||||
# %%
|
||||
|
|
|
@ -30,7 +30,7 @@ class BertEmbedder:
|
|||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
|
Loading…
Reference in New Issue