314 lines
12 KiB
Python
314 lines
12 KiB
Python
|
# %%
|
||
|
import pandas as pd
|
||
|
import os
|
||
|
import glob
|
||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||
|
import numpy as np
|
||
|
from utils import T5Embedder, BertEmbedder, cosine_similarity_chunked
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
##################
|
||
|
# global parameters
|
||
|
DIAGNOSTIC = False
|
||
|
BATCH_SIZE = 1024
|
||
|
|
||
|
###################
|
||
|
# helper functions
|
||
|
class Embedder():
|
||
|
input_df: pd.DataFrame
|
||
|
fold: int
|
||
|
|
||
|
def __init__(self, input_df):
|
||
|
self.input_df = input_df
|
||
|
|
||
|
|
||
|
def make_embedding(self, checkpoint_path):
|
||
|
|
||
|
def generate_input_list(df):
|
||
|
input_list = []
|
||
|
for _, row in df.iterrows():
|
||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||
|
element = f"{desc}{unit}{name}"
|
||
|
input_list.append(element)
|
||
|
return input_list
|
||
|
|
||
|
# prepare reference embed
|
||
|
train_data = list(generate_input_list(self.input_df))
|
||
|
# Define the directory and the pattern
|
||
|
embedder = T5Embedder(train_data, checkpoint_path)
|
||
|
# embedder = BertEmbedder(train_data, checkpoint_path)
|
||
|
embedder.make_embedding(batch_size=BATCH_SIZE)
|
||
|
return embedder.embeddings
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# the selection function takes in the full cos_sim_matrix then subsets the
|
||
|
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
||
|
# give it
|
||
|
# it returns the most likely source candidate index and score among the source
|
||
|
# candidate list
|
||
|
# we then map the local idx to the ship-level idx
|
||
|
def selection(cos_sim_matrix, source_mask, target_mask):
|
||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||
|
# except we are subsetting 2D matrix (row, column)
|
||
|
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
|
||
|
# we select top-k here
|
||
|
# Get the indices of the top-k maximum values along axis 1
|
||
|
top_k = 1
|
||
|
# returns a potential 2d matrix of which columns have the highest values
|
||
|
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||
|
# this partial sorts and ensures we care only top_k are correctly sorted
|
||
|
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
|
||
|
|
||
|
# Get the values of the top 5 maximum scores
|
||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||
|
|
||
|
# Calculate the average of the top-k scores along axis 1
|
||
|
y_scores = np.mean(top_k_values, axis=1)
|
||
|
max_idx = np.argmax(y_scores)
|
||
|
max_score = y_scores[max_idx]
|
||
|
|
||
|
# convert boolean to indices
|
||
|
condition_indices = np.where(source_mask)[0]
|
||
|
max_idx = condition_indices[max_idx]
|
||
|
|
||
|
|
||
|
return max_idx, max_score
|
||
|
|
||
|
|
||
|
|
||
|
####################
|
||
|
# global level
|
||
|
# obtain the full mdm_list
|
||
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
|
||
|
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
|
||
|
|
||
|
|
||
|
#####################
|
||
|
# fold level
|
||
|
|
||
|
def run_selection(fold):
|
||
|
|
||
|
# set the fold
|
||
|
# import test data
|
||
|
# data_path = f"../binary_classifier/classification_prediction/exports/result_group_{fold}.csv"
|
||
|
data_path = f"../similarity_classifier/exports/result_group_{fold}.csv"
|
||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
predicted_mdm = df['p_mdm'].to_numpy().astype(bool)
|
||
|
|
||
|
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
|
||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
df['p_mdm'] = predicted_mdm
|
||
|
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
|
||
|
|
||
|
# get target data
|
||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
|
||
|
|
||
|
# generate your embeddings
|
||
|
# checkpoint_directory defined at global level
|
||
|
# checkpoint_directory = "../../train/classification_bert_pattern_desc_unit"
|
||
|
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit_name"
|
||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||
|
|
||
|
# we can generate the train embeddings once and re-use for every ship
|
||
|
train_embedder = Embedder(input_df=train_df)
|
||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
# generate new embeddings for each ship
|
||
|
test_embedder = Embedder(input_df=df)
|
||
|
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
|
||
|
# create global_answer array
|
||
|
# the purpose of this array is to track the classification state at the global
|
||
|
# level
|
||
|
global_answer = np.zeros(len(df), dtype=bool)
|
||
|
|
||
|
#############################
|
||
|
# ship level
|
||
|
# we have to split into per-ship analysis
|
||
|
ships_list = sorted(list(set(df['ships_idx'])))
|
||
|
|
||
|
for ship_idx in tqdm(ships_list):
|
||
|
# ship_df = df[df['ships_idx'] == ship_idx]
|
||
|
# required to map local ship_answer array to global_answer array
|
||
|
# map_local_index_to_global_index = ship_df.index.to_numpy()
|
||
|
|
||
|
# we want to subset the ship and only p_mdm values
|
||
|
ship_mask = df['ships_idx'] == ship_idx
|
||
|
p_mdm_mask = df['p_mdm']
|
||
|
map_local_index_to_global_index = np.where(ship_mask & p_mdm_mask)[0]
|
||
|
ship_df = df[ship_mask & p_mdm_mask].reset_index(drop=True)
|
||
|
|
||
|
# subset the test embeds
|
||
|
test_embeds = global_test_embeds[map_local_index_to_global_index]
|
||
|
|
||
|
# generate the cosine sim matrix for the ship level
|
||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||
|
|
||
|
##############################
|
||
|
# selection level
|
||
|
# The general idea:
|
||
|
# step 1: keep only pattern generations that belong to mdm list
|
||
|
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||
|
# step 2: loop through the mdm list and isolate data in both train and test that
|
||
|
# belong to the same pattern class
|
||
|
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||
|
# -> so we have to find which candidate is most similar to the training data
|
||
|
|
||
|
# it is very tricky to keep track of classification across multiple stages so we
|
||
|
# will use a boolean answer list to map answers back to the global answer list
|
||
|
|
||
|
# initialize the local answer list
|
||
|
ship_answer_list = np.ones(len(ship_df), dtype=bool)
|
||
|
|
||
|
###########
|
||
|
# STEP 1A: ensure that the predicted mapping labels are valid
|
||
|
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
|
||
|
pattern_match_mask = pattern_match_mask.astype(bool)
|
||
|
# anything not in the pattern_match_mask are hallucinations
|
||
|
# this has the same effect as setting any wrong generations as non-mdm
|
||
|
ship_answer_list[~pattern_match_mask] = False
|
||
|
|
||
|
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
|
||
|
# p_mdm_mask = ship_df['p_mdm']
|
||
|
# # assign false to any non p_mdm entries
|
||
|
# ship_answer_list[~p_mdm_mask] = False
|
||
|
# # modify pattern_match_mask to remove any non p_mdm values
|
||
|
# pattern_match_mask = pattern_match_mask & p_mdm_mask
|
||
|
|
||
|
###########
|
||
|
# STEP 2
|
||
|
# we now go through each class found in our generated set
|
||
|
|
||
|
# we want to identify per-ship mdm classes
|
||
|
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
|
||
|
|
||
|
# this function performs the selection given a class
|
||
|
# it takes in the cos_sim_matrix
|
||
|
# it returns the selection by mutating the answer_list
|
||
|
# it sets all relevant idxs to False initially, then sets the selected values to True
|
||
|
def selection_for_class(select_class, cos_sim_matrix, answer_list):
|
||
|
|
||
|
# create local copy of answer_list
|
||
|
ship_answer_list = answer_list.copy()
|
||
|
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
|
||
|
|
||
|
|
||
|
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
|
||
|
# selected_idx_list = sample_df.index.to_numpy()
|
||
|
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
|
||
|
|
||
|
# basic assumption check
|
||
|
|
||
|
# generate the masking arrays for both test and train embeddings
|
||
|
# we select a tuple from each group, and use that as a candidate for selection
|
||
|
test_candidates_mask = ship_df['p_mapping'] == select_class
|
||
|
# we make candidates to compare against in the data sharing the same class
|
||
|
train_candidates_mask = train_df['mapping'] == select_class
|
||
|
|
||
|
if sum(train_candidates_mask) == 0:
|
||
|
# it can be the case that the mdm-valid mapping class is not found in training data
|
||
|
# print("not found in training data", select_class)
|
||
|
ship_answer_list[selected_idx_list] = False
|
||
|
return ship_answer_list
|
||
|
|
||
|
# perform selection
|
||
|
# max_idx is the id
|
||
|
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||
|
|
||
|
|
||
|
# set the duplicate entries to False
|
||
|
ship_answer_list[selected_idx_list] = False
|
||
|
# then only set the one unique chosen value as True
|
||
|
ship_answer_list[max_idx] = True
|
||
|
|
||
|
return ship_answer_list
|
||
|
|
||
|
# we choose one mdm class
|
||
|
for select_class in ship_predicted_classes:
|
||
|
# this resulted in big improvement
|
||
|
if (sum(ship_df['p_mapping'] == select_class)) > 0:
|
||
|
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
|
||
|
|
||
|
# we want to write back to global_answer
|
||
|
# first we convert local indices to global indices
|
||
|
ship_local_indices = np.where(ship_answer_list)[0]
|
||
|
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
|
||
|
global_answer[ship_global_indices] = True
|
||
|
|
||
|
|
||
|
if DIAGNOSTIC:
|
||
|
# evaluation at per-ship level
|
||
|
y_true = ship_df['MDM'].to_list()
|
||
|
y_pred = ship_answer_list
|
||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||
|
print(f"tp: {tp}")
|
||
|
print(f"tn: {tn}")
|
||
|
print(f"fp: {fp}")
|
||
|
print(f"fn: {fn}")
|
||
|
|
||
|
# Compute metrics
|
||
|
accuracy = accuracy_score(y_true, y_pred)
|
||
|
f1 = f1_score(y_true, y_pred)
|
||
|
precision = precision_score(y_true, y_pred)
|
||
|
recall = recall_score(y_true, y_pred)
|
||
|
|
||
|
# Print the results
|
||
|
print(f'Accuracy: {accuracy:.5f}')
|
||
|
print(f'F1 Score: {f1:.5f}')
|
||
|
print(f'Precision: {precision:.5f}')
|
||
|
print(f'Recall: {recall:.5f}')
|
||
|
|
||
|
|
||
|
|
||
|
with open("output.txt", "a") as f:
|
||
|
print(80 * '*', file=f)
|
||
|
print(f'Statistics for fold {fold}', file=f)
|
||
|
|
||
|
y_true = df['MDM'].to_list()
|
||
|
y_pred = global_answer
|
||
|
|
||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||
|
print(f"tp: {tp}", file=f)
|
||
|
print(f"tn: {tn}", file=f)
|
||
|
print(f"fp: {fp}", file=f)
|
||
|
print(f"fn: {fn}", file=f)
|
||
|
|
||
|
# compute metrics
|
||
|
accuracy = accuracy_score(y_true, y_pred)
|
||
|
f1 = f1_score(y_true, y_pred)
|
||
|
precision = precision_score(y_true, y_pred)
|
||
|
recall = recall_score(y_true, y_pred)
|
||
|
|
||
|
# print the results
|
||
|
print(f'accuracy: {accuracy:.5f}', file=f)
|
||
|
print(f'f1 score: {f1:.5f}', file=f)
|
||
|
print(f'Precision: {precision:.5f}', file=f)
|
||
|
print(f'Recall: {recall:.5f}', file=f)
|
||
|
|
||
|
|
||
|
# reset file before writing to it
|
||
|
with open("output.txt", "w") as f:
|
||
|
print('', file=f)
|
||
|
|
||
|
# %%
|
||
|
for fold in [1,2,3,4,5]:
|
||
|
print(f'Perform selection for fold {fold}')
|
||
|
run_selection(fold)
|
||
|
|
||
|
|
||
|
# %%
|