135 lines
4.4 KiB
Python
135 lines
4.4 KiB
Python
|
# %%
|
||
|
import pandas as pd
|
||
|
from utils import Retriever, cosine_similarity_chunked
|
||
|
import os
|
||
|
import glob
|
||
|
import numpy as np
|
||
|
from tqdm import tqdm
|
||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||
|
|
||
|
##################################################
|
||
|
# helper functions
|
||
|
|
||
|
|
||
|
# the following function takes in a full cos_sim_matrix
|
||
|
# condition_source: boolean selectors of the source embedding
|
||
|
# condition_target: boolean selectors of the target embedding
|
||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||
|
# except we are subsetting 2D matrix (row, column)
|
||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||
|
# we select top k here
|
||
|
# Get the indices of the top k maximum values along axis 1
|
||
|
top_k = 3
|
||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||
|
# the result is flipped
|
||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||
|
|
||
|
# Get the values of the top 5 maximum scores
|
||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||
|
|
||
|
|
||
|
return top_k_indices, top_k_values
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class Embedder():
|
||
|
input_df: pd.DataFrame
|
||
|
fold: int
|
||
|
|
||
|
def __init__(self, input_df):
|
||
|
self.input_df = input_df
|
||
|
|
||
|
|
||
|
def make_embedding(self, checkpoint_path):
|
||
|
|
||
|
def generate_input_list(df):
|
||
|
input_list = []
|
||
|
for _, row in df.iterrows():
|
||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||
|
element = f"{desc}{unit}"
|
||
|
input_list.append(element)
|
||
|
return input_list
|
||
|
|
||
|
# prepare reference embed
|
||
|
train_data = list(generate_input_list(self.input_df))
|
||
|
# Define the directory and the pattern
|
||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||
|
retriever_train.make_embedding(batch_size=64)
|
||
|
return retriever_train.embeddings.to('cpu')
|
||
|
|
||
|
|
||
|
|
||
|
def run_similarity_classifier(fold):
|
||
|
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
|
||
|
|
||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||
|
|
||
|
train_embedder = Embedder(input_df=train_df)
|
||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
test_embedder = Embedder(input_df=test_df)
|
||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
def compute_top_k(select_idx):
|
||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||
|
|
||
|
_, top_k_values = find_closest(
|
||
|
cos_sim_matrix=cos_sim_matrix,
|
||
|
condition_source=condition_source,
|
||
|
condition_target=condition_target)
|
||
|
|
||
|
return top_k_values[0][0]
|
||
|
|
||
|
|
||
|
|
||
|
# test embeds are inputs since we are looking back at train data
|
||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||
|
|
||
|
|
||
|
sim_list = []
|
||
|
for select_idx in tqdm(test_df.index):
|
||
|
top_sim_value = compute_top_k(select_idx)
|
||
|
sim_list.append(top_sim_value)
|
||
|
|
||
|
# analysis 1: using threshold to perform find-back prediction success
|
||
|
threshold = 0.90
|
||
|
predict_list = [ elem > threshold for elem in sim_list ]
|
||
|
|
||
|
y_true = test_df['MDM'].to_list()
|
||
|
y_pred = predict_list
|
||
|
|
||
|
# Compute metrics
|
||
|
accuracy = accuracy_score(y_true, y_pred)
|
||
|
f1 = f1_score(y_true, y_pred)
|
||
|
precision = precision_score(y_true, y_pred)
|
||
|
recall = recall_score(y_true, y_pred)
|
||
|
|
||
|
# Print the results
|
||
|
print(f'Accuracy: {accuracy:.5f}')
|
||
|
print(f'F1 Score: {f1:.5f}')
|
||
|
print(f'Precision: {precision:.5f}')
|
||
|
print(f'Recall: {recall:.5f}')
|
||
|
|
||
|
|
||
|
# %%
|
||
|
|
||
|
for fold in [1,2,3,4,5]:
|
||
|
run_similarity_classifier(fold)
|