hipom_data_mapping/test/selection/predict.py

130 lines
5.3 KiB
Python
Raw Normal View History

2024-10-31 15:58:20 +09:00
import pandas as pd
import os
import glob
from inference import Inference
# directory for checkpoints
checkpoint_directory = '../../train/baseline'
def infer_and_select(fold):
# import test data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
##########################################
# run inference
# checkpoint
# Use glob to find matching paths
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
infer = Inference(checkpoint_path)
infer.prepare_dataloader(df, batch_size=256, max_length=64)
thing_prediction_list, property_prediction_list = infer.generate()
# add labels too
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
# Convert the list to a Pandas DataFrame
df_out = pd.DataFrame({
'p_thing': thing_prediction_list,
'p_property': property_prediction_list
})
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
df = pd.concat([df, df_out], axis=1)
##########################################
# Process the dataframe for selection
# we start to cull predictions from here
data_master_path = f"../../data_import/exports/data_model_master_export.csv"
df_master = pd.read_csv(data_master_path, skipinitialspace=True)
data_mapping = df
# Generate patterns
data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True)
data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True)
data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern']
df_master['master_pattern'] = df_master['thing'] + " " + df_master['property']
# Create a set of unique patterns from master for fast lookup
master_patterns = set(df_master['master_pattern'])
# thing_patterns = set(df_master['thing'])
# Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field
data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns)
# check if prediction is in MDM
data_mapping['p_thing_pattern'] = data_mapping['p_thing'].str.replace(r'\d', '#', regex=True)
data_mapping['p_property_pattern'] = data_mapping['p_property'].str.replace(r'\d', '#', regex=True)
data_mapping['p_pattern'] = data_mapping['p_thing_pattern'] + " " + data_mapping['p_property_pattern']
data_mapping['p_MDM'] = data_mapping['p_pattern'].apply(lambda x: x in master_patterns)
df = data_mapping
# we can save the t5 generation output here
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
condition1 = df['MDM']
condition2 = df['p_MDM']
condition_correct_thing = df['p_thing'] == df['thing']
condition_correct_property = df['p_property'] == df['property']
match = sum(condition1 & condition2)
fn = sum(condition1 & ~condition2)
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
# print("mdm match predicted mdm: ", match) # 56 - false negative
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
# print("total mdm: ", sum(condition1)) # 2113
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
# print("correct mdm predicted", prediction_mdm_correct)
# selection
###########################################
# we now have to perform selection
# we restrict to predictions of a class of a ship
# then perform similarity selection with in-distribution data
# the magic is in performing per-class selection, not global
# import importlib
import selection
# importlib.reload(selection)
selector = selection.Selector(input_df=df, reference_df=train_df, fold=fold)
tp, tn, fp, fn = selector.run_selection(checkpoint_path=checkpoint_path)
# write output to file output.txt
with open("output.txt", "a") as f:
print(80 * '*', file=f)
print(f'Statistics for fold {fold}', file=f)
print(f"tp: {tp}", file=f)
print(f"tn: {tn}", file=f)
print(f"fp: {fp}", file=f)
print(f"fn: {fn}", file=f)
print(f"fold: {fold}", file=f)
print("accuracy: ", (tp+tn)/(tp+tn+fp+fn), file=f)
print("f1_score: ", (2*tp)/((2*tp) + fp + fn), file=f)
print("precision: ", (tp)/(tp+fp), file=f)
print("recall: ", (tp)/(tp+fn), file=f)
###########################################
# Execute for all folds
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
infer_and_select(fold)