130 lines
5.3 KiB
Python
130 lines
5.3 KiB
Python
|
import pandas as pd
|
||
|
import os
|
||
|
import glob
|
||
|
from inference import Inference
|
||
|
|
||
|
# directory for checkpoints
|
||
|
checkpoint_directory = '../../train/baseline'
|
||
|
|
||
|
def infer_and_select(fold):
|
||
|
# import test data
|
||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
# get target data
|
||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
# processing to help with selection later
|
||
|
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||
|
|
||
|
|
||
|
##########################################
|
||
|
# run inference
|
||
|
# checkpoint
|
||
|
# Use glob to find matching paths
|
||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||
|
|
||
|
infer = Inference(checkpoint_path)
|
||
|
infer.prepare_dataloader(df, batch_size=256, max_length=64)
|
||
|
thing_prediction_list, property_prediction_list = infer.generate()
|
||
|
|
||
|
# add labels too
|
||
|
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||
|
# Convert the list to a Pandas DataFrame
|
||
|
df_out = pd.DataFrame({
|
||
|
'p_thing': thing_prediction_list,
|
||
|
'p_property': property_prediction_list
|
||
|
})
|
||
|
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||
|
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||
|
df = pd.concat([df, df_out], axis=1)
|
||
|
|
||
|
##########################################
|
||
|
# Process the dataframe for selection
|
||
|
|
||
|
# we start to cull predictions from here
|
||
|
data_master_path = f"../../data_import/exports/data_model_master_export.csv"
|
||
|
df_master = pd.read_csv(data_master_path, skipinitialspace=True)
|
||
|
data_mapping = df
|
||
|
# Generate patterns
|
||
|
data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True)
|
||
|
data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True)
|
||
|
data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern']
|
||
|
df_master['master_pattern'] = df_master['thing'] + " " + df_master['property']
|
||
|
# Create a set of unique patterns from master for fast lookup
|
||
|
master_patterns = set(df_master['master_pattern'])
|
||
|
# thing_patterns = set(df_master['thing'])
|
||
|
# Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field
|
||
|
data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns)
|
||
|
|
||
|
# check if prediction is in MDM
|
||
|
data_mapping['p_thing_pattern'] = data_mapping['p_thing'].str.replace(r'\d', '#', regex=True)
|
||
|
data_mapping['p_property_pattern'] = data_mapping['p_property'].str.replace(r'\d', '#', regex=True)
|
||
|
data_mapping['p_pattern'] = data_mapping['p_thing_pattern'] + " " + data_mapping['p_property_pattern']
|
||
|
data_mapping['p_MDM'] = data_mapping['p_pattern'].apply(lambda x: x in master_patterns)
|
||
|
|
||
|
df = data_mapping
|
||
|
|
||
|
# we can save the t5 generation output here
|
||
|
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
|
||
|
|
||
|
|
||
|
|
||
|
condition1 = df['MDM']
|
||
|
condition2 = df['p_MDM']
|
||
|
|
||
|
condition_correct_thing = df['p_thing'] == df['thing']
|
||
|
condition_correct_property = df['p_property'] == df['property']
|
||
|
match = sum(condition1 & condition2)
|
||
|
fn = sum(condition1 & ~condition2)
|
||
|
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
|
||
|
|
||
|
# print("mdm match predicted mdm: ", match) # 56 - false negative
|
||
|
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
|
||
|
# print("total mdm: ", sum(condition1)) # 2113
|
||
|
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
|
||
|
# print("correct mdm predicted", prediction_mdm_correct)
|
||
|
|
||
|
|
||
|
# selection
|
||
|
###########################################
|
||
|
# we now have to perform selection
|
||
|
# we restrict to predictions of a class of a ship
|
||
|
# then perform similarity selection with in-distribution data
|
||
|
# the magic is in performing per-class selection, not global
|
||
|
# import importlib
|
||
|
import selection
|
||
|
# importlib.reload(selection)
|
||
|
selector = selection.Selector(input_df=df, reference_df=train_df, fold=fold)
|
||
|
tp, tn, fp, fn = selector.run_selection(checkpoint_path=checkpoint_path)
|
||
|
|
||
|
|
||
|
# write output to file output.txt
|
||
|
with open("output.txt", "a") as f:
|
||
|
print(80 * '*', file=f)
|
||
|
print(f'Statistics for fold {fold}', file=f)
|
||
|
print(f"tp: {tp}", file=f)
|
||
|
print(f"tn: {tn}", file=f)
|
||
|
print(f"fp: {fp}", file=f)
|
||
|
print(f"fn: {fn}", file=f)
|
||
|
print(f"fold: {fold}", file=f)
|
||
|
print("accuracy: ", (tp+tn)/(tp+tn+fp+fn), file=f)
|
||
|
print("f1_score: ", (2*tp)/((2*tp) + fp + fn), file=f)
|
||
|
print("precision: ", (tp)/(tp+fp), file=f)
|
||
|
print("recall: ", (tp)/(tp+fn), file=f)
|
||
|
|
||
|
###########################################
|
||
|
# Execute for all folds
|
||
|
|
||
|
# reset file before writing to it
|
||
|
with open("output.txt", "w") as f:
|
||
|
print('', file=f)
|
||
|
|
||
|
for fold in [1,2,3,4,5]:
|
||
|
infer_and_select(fold)
|