Feat: added train and test directories
This commit is contained in:
parent
c7a02c792c
commit
16374b9ab8
|
@ -158,7 +158,7 @@ data_file_path = 'exports/preprocessed_data.csv'
|
|||
data = pd.read_csv(data_file_path)
|
||||
|
||||
# Filter the data where MDM is True
|
||||
mdm_true = data[data['MDM'] == True].copy() # .copy()를 사용하여 명시적으로 복사본 생성
|
||||
mdm_true = data[data['MDM']].copy() # .copy()를 사용하여 명시적으로 복사본 생성
|
||||
mdm_all = data.copy()
|
||||
|
||||
# Create a new column combining 'thing' and 'property'
|
||||
|
@ -340,7 +340,7 @@ def save_datasets_for_group(groups, mdm, data, output_dir='exports/dataset', n_s
|
|||
|
||||
# Create the test dataset by including only group i
|
||||
test_group_ships = groups[i]
|
||||
test_data = mdm[mdm['ships_idx'].isin(test_group_ships)]
|
||||
# test_data = mdm[mdm['ships_idx'].isin(test_group_ships)]
|
||||
|
||||
# Extract corresponding entries from the external test dataset
|
||||
test_all_data = data[data['ships_idx'].isin(test_group_ships)]
|
||||
|
@ -363,16 +363,21 @@ def save_datasets_for_group(groups, mdm, data, output_dir='exports/dataset', n_s
|
|||
train_all_data = pd.concat([final_train_data, valid_data])
|
||||
|
||||
# Save datasets to CSV files
|
||||
# train.csv: mdm training set
|
||||
# valid.csv: mdm validation set
|
||||
# test.csv: mdm test set
|
||||
# test_all.csv: all test set with non-mdm
|
||||
# train_all.csv: all train set with non-mdm
|
||||
train_file_path = os.path.join(group_folder, 'train.csv')
|
||||
valid_file_path = os.path.join(group_folder, 'valid.csv')
|
||||
test_file_path = os.path.join(group_folder, 'test.csv')
|
||||
# test_file_path = os.path.join(group_folder, 'test.csv')
|
||||
test_all_file_path = os.path.join(group_folder, 'test_all.csv')
|
||||
train_all_file_path = os.path.join(group_folder, 'train_all.csv')
|
||||
|
||||
final_train_data.to_csv(train_file_path, index=False, encoding='utf-8-sig')
|
||||
valid_data.to_csv(valid_file_path, index=False, encoding='utf-8-sig')
|
||||
# test_data.to_csv(test_file_path, index=False, encoding='utf-8-sig')
|
||||
test_all_data.to_csv(test_file_path, index=False, encoding='utf-8-sig')
|
||||
test_all_data.to_csv(test_all_file_path, index=False, encoding='utf-8-sig')
|
||||
train_all_data.to_csv(train_all_file_path, index=False, encoding='utf-8-sig')
|
||||
|
||||
print(f"Group {i + 1} datasets saved in {group_folder}")
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
__pycache__
|
|
@ -0,0 +1,162 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
def _process_df(df):
|
||||
output_list = [{
|
||||
'input': f"<DESC>{row['tag_description']}<DESC>",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
} for _, row in df.iterrows()]
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9171793658305727
|
||||
Accuracy for fold 2: 0.9051401869158878
|
||||
Accuracy for fold 3: 0.9688755020080321
|
||||
Accuracy for fold 4: 0.9624167459562322
|
||||
Accuracy for fold 5: 0.8896014658726523
|
|
@ -0,0 +1,71 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../../train/baseline'
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=256, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1 @@
|
|||
__pycache__
|
|
@ -0,0 +1,164 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import glob
|
||||
import os
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
def _process_df(df):
|
||||
output_list = [{
|
||||
'input': f"<DESC>{row['tag_description']}<DESC>",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
} for _, row in df.iterrows()]
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,56 @@
|
|||
|
||||
********************************************************************************
|
||||
Statistics for fold 1
|
||||
tp: 1792
|
||||
tn: 10533
|
||||
fp: 428
|
||||
fn: 321
|
||||
fold: 1
|
||||
accuracy: 0.9427107235735047
|
||||
f1_score: 0.827140549273021
|
||||
precision: 0.8072072072072072
|
||||
recall: 0.8480832938949361
|
||||
********************************************************************************
|
||||
Statistics for fold 2
|
||||
tp: 1875
|
||||
tn: 8189
|
||||
fp: 393
|
||||
fn: 265
|
||||
fold: 2
|
||||
accuracy: 0.9386308524529006
|
||||
f1_score: 0.8507259528130672
|
||||
precision: 0.8267195767195767
|
||||
recall: 0.8761682242990654
|
||||
********************************************************************************
|
||||
Statistics for fold 3
|
||||
tp: 1831
|
||||
tn: 7455
|
||||
fp: 408
|
||||
fn: 161
|
||||
fold: 3
|
||||
accuracy: 0.9422628107559614
|
||||
f1_score: 0.8655164263767431
|
||||
precision: 0.8177757927646271
|
||||
recall: 0.9191767068273092
|
||||
********************************************************************************
|
||||
Statistics for fold 4
|
||||
tp: 1909
|
||||
tn: 12866
|
||||
fp: 483
|
||||
fn: 193
|
||||
fold: 4
|
||||
accuracy: 0.9562487864863116
|
||||
f1_score: 0.8495772140631954
|
||||
precision: 0.7980769230769231
|
||||
recall: 0.9081826831588963
|
||||
********************************************************************************
|
||||
Statistics for fold 5
|
||||
tp: 1928
|
||||
tn: 10359
|
||||
fp: 427
|
||||
fn: 255
|
||||
fold: 5
|
||||
accuracy: 0.9474130619168787
|
||||
f1_score: 0.8497135301895108
|
||||
precision: 0.818683651804671
|
||||
recall: 0.8831882730187814
|
|
@ -0,0 +1,129 @@
|
|||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
# directory for checkpoints
|
||||
checkpoint_directory = '../../train/baseline'
|
||||
|
||||
def infer_and_select(fold):
|
||||
# import test data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=256, max_length=64)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
##########################################
|
||||
# Process the dataframe for selection
|
||||
|
||||
# we start to cull predictions from here
|
||||
data_master_path = f"../../data_import/exports/data_model_master_export.csv"
|
||||
df_master = pd.read_csv(data_master_path, skipinitialspace=True)
|
||||
data_mapping = df
|
||||
# Generate patterns
|
||||
data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True)
|
||||
data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True)
|
||||
data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern']
|
||||
df_master['master_pattern'] = df_master['thing'] + " " + df_master['property']
|
||||
# Create a set of unique patterns from master for fast lookup
|
||||
master_patterns = set(df_master['master_pattern'])
|
||||
# thing_patterns = set(df_master['thing'])
|
||||
# Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field
|
||||
data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns)
|
||||
|
||||
# check if prediction is in MDM
|
||||
data_mapping['p_thing_pattern'] = data_mapping['p_thing'].str.replace(r'\d', '#', regex=True)
|
||||
data_mapping['p_property_pattern'] = data_mapping['p_property'].str.replace(r'\d', '#', regex=True)
|
||||
data_mapping['p_pattern'] = data_mapping['p_thing_pattern'] + " " + data_mapping['p_property_pattern']
|
||||
data_mapping['p_MDM'] = data_mapping['p_pattern'].apply(lambda x: x in master_patterns)
|
||||
|
||||
df = data_mapping
|
||||
|
||||
# we can save the t5 generation output here
|
||||
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
|
||||
|
||||
|
||||
|
||||
condition1 = df['MDM']
|
||||
condition2 = df['p_MDM']
|
||||
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
match = sum(condition1 & condition2)
|
||||
fn = sum(condition1 & ~condition2)
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
|
||||
|
||||
# print("mdm match predicted mdm: ", match) # 56 - false negative
|
||||
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
|
||||
# print("total mdm: ", sum(condition1)) # 2113
|
||||
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
|
||||
# print("correct mdm predicted", prediction_mdm_correct)
|
||||
|
||||
|
||||
# selection
|
||||
###########################################
|
||||
# we now have to perform selection
|
||||
# we restrict to predictions of a class of a ship
|
||||
# then perform similarity selection with in-distribution data
|
||||
# the magic is in performing per-class selection, not global
|
||||
# import importlib
|
||||
import selection
|
||||
# importlib.reload(selection)
|
||||
selector = selection.Selector(input_df=df, reference_df=train_df, fold=fold)
|
||||
tp, tn, fp, fn = selector.run_selection(checkpoint_path=checkpoint_path)
|
||||
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(80 * '*', file=f)
|
||||
print(f'Statistics for fold {fold}', file=f)
|
||||
print(f"tp: {tp}", file=f)
|
||||
print(f"tn: {tn}", file=f)
|
||||
print(f"fp: {fp}", file=f)
|
||||
print(f"fn: {fn}", file=f)
|
||||
print(f"fold: {fold}", file=f)
|
||||
print("accuracy: ", (tp+tn)/(tp+tn+fp+fn), file=f)
|
||||
print("f1_score: ", (2*tp)/((2*tp) + fp + fn), file=f)
|
||||
print("precision: ", (tp)/(tp+fp), file=f)
|
||||
print("recall: ", (tp)/(tp+fn), file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,187 @@
|
|||
import pandas as pd
|
||||
import numpy as np
|
||||
from typing import List
|
||||
from tqdm import tqdm
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
|
||||
class Selector():
|
||||
input_df: pd.DataFrame
|
||||
reference_df: pd.DataFrame
|
||||
ships_list: List[int]
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df, reference_df, fold):
|
||||
self.ships_list = sorted(list(set(input_df['ships_idx'])))
|
||||
self.input_df = input_df
|
||||
self.reference_df = reference_df
|
||||
self.fold = fold
|
||||
|
||||
|
||||
def run_selection(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
# name = f"<NAME>{row['tag_name']}<NAME>"
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
# element = f"{name}{desc}"
|
||||
element = f"{desc}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# given a dataframe, return a single idx of the entry has the highest match with
|
||||
# the embedding
|
||||
def selection(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top 5 maximum values along axis 1
|
||||
top_k = 1
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
# Calculate the average of the top 5 scores along axis 1
|
||||
y_scores = np.mean(top_k_values, axis=1)
|
||||
max_idx = np.argmax(y_scores)
|
||||
max_score = y_scores[max_idx]
|
||||
# convert boolean to indices (1,2,3)
|
||||
condition_indices = np.where(condition_source)[0]
|
||||
max_idx = condition_indices[max_idx]
|
||||
|
||||
return max_idx, max_score
|
||||
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.reference_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_mean_embedding(batch_size=64)
|
||||
train_embed = retriever_train.embeddings
|
||||
|
||||
# take the inputs for df_sub
|
||||
test_data = list(generate_input_list(self.input_df))
|
||||
retriever_test = Retriever(test_data, checkpoint_path)
|
||||
retriever_test.make_mean_embedding(batch_size=64)
|
||||
test_embed = retriever_test.embeddings
|
||||
|
||||
|
||||
|
||||
# precision_list = []
|
||||
# recall_list = []
|
||||
tp_accumulate = 0
|
||||
tn_accumulate = 0
|
||||
fp_accumulate = 0
|
||||
fn_accumulate = 0
|
||||
THRESHOLD = 0.9
|
||||
for ship_idx in self.ships_list:
|
||||
print(ship_idx)
|
||||
# we select a ship and select only data exhibiting MDM pattern in the predictions
|
||||
ship_mask = (self.input_df['ships_idx'] == ship_idx) & (self.input_df['p_MDM'])
|
||||
df_ship = self.input_df[ship_mask].reset_index(drop=True)
|
||||
# we then try to make a dataframe for each thing_property attribute
|
||||
df_ship['thing_property'] = df_ship['p_thing'] + " " + df_ship['p_property']
|
||||
unique_patterns = list(set(df_ship['thing_property']))
|
||||
condition_list = []
|
||||
for pattern in unique_patterns:
|
||||
# we obtain the boolean mask to subset the source and target entries
|
||||
condition_source = (df_ship['thing_property'] == pattern)
|
||||
condition_target = (self.reference_df['thing_property'] == pattern)
|
||||
item = {'condition_source': condition_source,
|
||||
'condition_target': condition_target}
|
||||
condition_list.append(item)
|
||||
|
||||
# subset part of self.input_df that belongs to the ship
|
||||
test_embed_subset = test_embed[ship_mask]
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embed_subset, train_embed, chunk_size=8).cpu().numpy()
|
||||
|
||||
|
||||
# for each sub_df, we have to select the best candidate
|
||||
# we will do this by finding which desc input has the highest similarity with train data
|
||||
all_idx_list = []
|
||||
selected_idx_list = []
|
||||
similarity_score = []
|
||||
for item in tqdm(condition_list):
|
||||
condition_source = item['condition_source']
|
||||
condition_target = item['condition_target']
|
||||
# if there is no equivalent data in target, we skip
|
||||
if sum(condition_target) == 0:
|
||||
pass
|
||||
# if there is equivalent data in target, we perform selection among source
|
||||
# by top-k highest similarity with targets
|
||||
else:
|
||||
# idx is with respect
|
||||
max_idx, max_score = selection(
|
||||
cos_sim_matrix, condition_source, condition_target
|
||||
)
|
||||
all_idx_list.append(max_idx)
|
||||
similarity_score.append(max_score)
|
||||
# implement thresholding
|
||||
if max_score > THRESHOLD:
|
||||
selected_idx_list.append(max_idx)
|
||||
|
||||
# let us tag the df_ship with the respective 'selected' and 'ood' tags
|
||||
df_ship['selected'] = False
|
||||
df_ship.loc[all_idx_list, 'selected'] = True
|
||||
df_ship['ood'] = 0.0
|
||||
df_ship.loc[all_idx_list, 'ood'] = similarity_score
|
||||
|
||||
# we now split the dataframe by p_mdm
|
||||
# explanation:
|
||||
# we first separated our ship into p_mdm and non p_mdm
|
||||
# we only select final in-mdm prediction from p_mdm subset
|
||||
# anything that is not selected and from non-p_mdm is predicted not in mdm
|
||||
|
||||
# get our final prediction
|
||||
df_subset_predicted_true = df_ship.loc[selected_idx_list]
|
||||
# take the set difference between df_ship's index and the given list
|
||||
inverse_list = df_ship.index.difference(selected_idx_list).to_list()
|
||||
df_subset_predicted_false = df_ship.loc[inverse_list]
|
||||
|
||||
not_p_mdm_mask = (self.input_df['ships_idx'] == ship_idx) & (~self.input_df['p_MDM'])
|
||||
# this is the part we don't care
|
||||
df_not_p_mdm = self.input_df[not_p_mdm_mask].reset_index(drop=True)
|
||||
|
||||
# concat
|
||||
df_false = pd.concat([df_subset_predicted_false, df_not_p_mdm], axis=0)
|
||||
assert(len(df_false) + len(df_subset_predicted_true) == sum(self.input_df['ships_idx'] == ship_idx))
|
||||
|
||||
# we want to return a df with the final prediction
|
||||
# a bit dirty, but we re-use the fields
|
||||
df_false['p_MDM'] = False
|
||||
df_subset_predicted_true['p_MDM'] = True
|
||||
|
||||
|
||||
# save ship for analysis later
|
||||
# df_return = pd.concat([df_false, df_subset_predicted_true], axis=0)
|
||||
# df_return.to_parquet(f'exports/fold_{self.fold}/ship_{ship_idx}.parquet')
|
||||
|
||||
|
||||
|
||||
|
||||
# true positive -> predicted in mdm, actual in mdm
|
||||
# we get all the final predictions that are also found in MDM
|
||||
true_positive = sum(df_subset_predicted_true['MDM'])
|
||||
# true negative -> predicted not in mdm, and not found in MDM
|
||||
# we negate the condition to get those that are not found in MDM
|
||||
true_negative = sum(~df_false['MDM'])
|
||||
# false positive -> predicted in mdm, not found in mdm
|
||||
false_positive = sum(~df_subset_predicted_true['MDM'])
|
||||
# false negative -> predicted not in mdm, found in mdm
|
||||
false_negative = sum(df_false['MDM'])
|
||||
|
||||
|
||||
tp_accumulate = tp_accumulate + true_positive
|
||||
tn_accumulate = tn_accumulate + true_negative
|
||||
fp_accumulate = fp_accumulate + false_positive
|
||||
fn_accumulate = fn_accumulate + false_negative
|
||||
|
||||
|
||||
|
||||
total_sum = (tp_accumulate + tn_accumulate + fp_accumulate + fn_accumulate)
|
||||
# ensure that all entries are accounted for
|
||||
assert(total_sum == len(self.input_df))
|
||||
return tp_accumulate, tn_accumulate, fp_accumulate, fn_accumulate
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer
|
||||
from transformers import AutoModelForSeq2SeqLM
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
class Retriever:
|
||||
def __init__(self, input_texts, model_checkpoint):
|
||||
# we need to generate the embedding from list of input strings
|
||||
self.embeddings = []
|
||||
self.inputs = input_texts
|
||||
model_checkpoint = model_checkpoint
|
||||
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# define additional special tokens
|
||||
additional_special_tokens = ["<thing_start>", "<thing_end>", "<property_start>", "<property_end>", "<name>", "<desc>", "<sig>", "<unit>", "<data_type>"]
|
||||
# add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
model.to(self.device)
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def make_mean_embedding(self, batch_size=32):
|
||||
all_embeddings = self.embeddings
|
||||
input_texts = self.inputs
|
||||
|
||||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
||||
# Pass the input through the encoder and retrieve the embeddings
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
|
||||
embeddings = encoder_outputs.last_hidden_state
|
||||
|
||||
# Compute the mean pooling of the token embeddings
|
||||
# mean_embedding = embeddings.mean(dim=1)
|
||||
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
|
||||
all_embeddings.append(mean_embedding)
|
||||
|
||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||
|
||||
self.embeddings = all_embeddings
|
||||
|
||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=16):
|
||||
batch1_size = batch1.size(0)
|
||||
batch2_size = batch2.size(0)
|
||||
|
||||
# Prepare an empty tensor to store results
|
||||
cos_sim = torch.empty(batch1_size, batch2_size, device=batch1.device)
|
||||
|
||||
# Process batch1 in chunks
|
||||
for i in range(0, batch1_size, chunk_size):
|
||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||
|
||||
# Expand batch1 chunk and entire batch2 for comparison
|
||||
batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||
batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||
|
||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||
cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||
|
||||
return cos_sim
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log/
|
|
@ -0,0 +1,195 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
element = {
|
||||
'input' : f"{desc}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 64
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
eval_strategy="epoch",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
save_strategy="epoch",
|
||||
load_best_model_at_end=True,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
Loading…
Reference in New Issue