semes_gaf/self_supervised/lars.py

114 lines
4.0 KiB
Python

"""
Layer-wise adaptive rate scaling for SGD in PyTorch!
Based on https://github.com/noahgolmant/pytorch-lars
"""
import torch
from torch.optim.optimizer import Optimizer
class LARS(Optimizer):
r"""Implements layer-wise adaptive rate scaling for SGD.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): base learning rate (\gamma_0)
momentum (float, optional): momentum factor (default: 0) ("m")
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
("\beta")
eta (float, optional): LARS coefficient
max_epoch: maximum training epoch to determine polynomial LR decay.
Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg.
Large Batch Training of Convolutional Networks:
https://arxiv.org/abs/1708.03888
Example:
>>> optimizer = LARS(model.parameters(), lr=0.1, eta=1e-3)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
"""
def __init__(self, params, lr=1.0, momentum=0.9, weight_decay=0.0005, eta=0.001, max_epoch=200, warmup_epochs=1):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if eta < 0.0:
raise ValueError("Invalid LARS coefficient value: {}".format(eta))
self.epoch = 0
defaults = dict(
lr=lr,
momentum=momentum,
weight_decay=weight_decay,
eta=eta,
max_epoch=max_epoch,
warmup_epochs=warmup_epochs,
use_lars=True,
)
super().__init__(params, defaults)
def step(self, epoch=None, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
epoch: current epoch to calculate polynomial LR decay schedule.
if None, uses self.epoch and increments it.
"""
loss = None
if closure is not None:
loss = closure()
if epoch is None:
epoch = self.epoch
self.epoch += 1
for group in self.param_groups:
weight_decay = group["weight_decay"]
momentum = group["momentum"]
eta = group["eta"]
lr = group["lr"]
warmup_epochs = group["warmup_epochs"]
use_lars = group["use_lars"]
group["lars_lrs"] = []
for p in group["params"]:
if p.grad is None:
continue
param_state = self.state[p]
d_p = p.grad.data
weight_norm = torch.norm(p.data)
grad_norm = torch.norm(d_p)
# Global LR computed on polynomial decay schedule
warmup = min((1 + float(epoch)) / warmup_epochs, 1)
global_lr = lr * warmup
# Update the momentum term
if use_lars:
# Compute local learning rate for this layer
local_lr = eta * weight_norm / (grad_norm + weight_decay * weight_norm)
actual_lr = local_lr * global_lr
group["lars_lrs"].append(actual_lr.item())
else:
actual_lr = global_lr
group["lars_lrs"].append(global_lr)
if "momentum_buffer" not in param_state:
buf = param_state["momentum_buffer"] = torch.zeros_like(p.data)
else:
buf = param_state["momentum_buffer"]
buf.mul_(momentum).add_(d_p + weight_decay * p.data, alpha=actual_lr)
p.data.add_(-buf)
return loss