""" Layer-wise adaptive rate scaling for SGD in PyTorch! Based on https://github.com/noahgolmant/pytorch-lars """ import torch from torch.optim.optimizer import Optimizer class LARS(Optimizer): r"""Implements layer-wise adaptive rate scaling for SGD. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): base learning rate (\gamma_0) momentum (float, optional): momentum factor (default: 0) ("m") weight_decay (float, optional): weight decay (L2 penalty) (default: 0) ("\beta") eta (float, optional): LARS coefficient max_epoch: maximum training epoch to determine polynomial LR decay. Based on Algorithm 1 of the following paper by You, Gitman, and Ginsburg. Large Batch Training of Convolutional Networks: https://arxiv.org/abs/1708.03888 Example: >>> optimizer = LARS(model.parameters(), lr=0.1, eta=1e-3) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() """ def __init__(self, params, lr=1.0, momentum=0.9, weight_decay=0.0005, eta=0.001, max_epoch=200, warmup_epochs=1): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if eta < 0.0: raise ValueError("Invalid LARS coefficient value: {}".format(eta)) self.epoch = 0 defaults = dict( lr=lr, momentum=momentum, weight_decay=weight_decay, eta=eta, max_epoch=max_epoch, warmup_epochs=warmup_epochs, use_lars=True, ) super().__init__(params, defaults) def step(self, epoch=None, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. epoch: current epoch to calculate polynomial LR decay schedule. if None, uses self.epoch and increments it. """ loss = None if closure is not None: loss = closure() if epoch is None: epoch = self.epoch self.epoch += 1 for group in self.param_groups: weight_decay = group["weight_decay"] momentum = group["momentum"] eta = group["eta"] lr = group["lr"] warmup_epochs = group["warmup_epochs"] use_lars = group["use_lars"] group["lars_lrs"] = [] for p in group["params"]: if p.grad is None: continue param_state = self.state[p] d_p = p.grad.data weight_norm = torch.norm(p.data) grad_norm = torch.norm(d_p) # Global LR computed on polynomial decay schedule warmup = min((1 + float(epoch)) / warmup_epochs, 1) global_lr = lr * warmup # Update the momentum term if use_lars: # Compute local learning rate for this layer local_lr = eta * weight_norm / (grad_norm + weight_decay * weight_norm) actual_lr = local_lr * global_lr group["lars_lrs"].append(actual_lr.item()) else: actual_lr = global_lr group["lars_lrs"].append(global_lr) if "momentum_buffer" not in param_state: buf = param_state["momentum_buffer"] = torch.zeros_like(p.data) else: buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(d_p + weight_decay * p.data, alpha=actual_lr) p.data.add_(-buf) return loss