//----------------------------------------------------------------------------------- // Implementation of a MPS algorithm via PC-tree. //----------------------------------------------------------------------------------- #include "mps.h" // #define DEBUG // constructor can be made empty maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {} //Destructor maximal_planar_subgraph_finder::~maximal_planar_subgraph_finder() { for (size_t i = 0; i < _node_list.size(); ++i) delete _node_list[i]; for (size_t i = 0; i < _new_node_list.size(); ++i) delete _new_node_list[i]; } node* maximal_planar_subgraph_finder::get_new_node(node_type t) { _new_node_list.push_back(new node(t)); return _new_node_list[_new_node_list.size()-1]; } vector maximal_planar_subgraph_finder::return_post_order() { vector post_order; for (size_t i = 0; i < _post_order_list.size(); ++i) { post_order.push_back(_post_order_list[i]->node_id()); } return post_order; } //Determine the post-order-list by a DFS-traversal. void maximal_planar_subgraph_finder::postOrderTraversal() { node::init_mark(); // always start with node 0 int postOrderID = 0; for (size_t i = 0; i < _node_list.size(); ++i) { if (!_node_list[i]->is_marked()) { _node_list[i]->DFS_visit(_post_order_list, postOrderID); } } } // Determine the post-order-list by a DFS-traversal. // take in a post-order argument then traces the graph in the same order // return is by reference via _post_order_list void maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector post_order) { node::init_mark(); // // implementation 1: pass reversed vector // vector rev_post_order; // for (int i = post_order.size() - 1; i >= 0; --i) { // rev_post_order.push_back(post_order[i]); // } // int start = rev_post_order[0]; unordered_map node_id_to_pos; int j = 0; // we flip the post_order vector around for (size_t i = post_order.size() - 1; i >= 0; --i) { node_id_to_pos[post_order[i]] = j++; } int postOrderID = 0; int end_condition = _node_list.size(); // we start from the end of the post_order, which is the root node int start = post_order[post_order.size() - 1]; int i = start; while (true) { if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1))) { if (!_node_list[i]->is_marked()) { _node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos); } break; } if (!_node_list[i]->is_marked()) { _node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos); } i = (i + 1) % end_condition; } } //Determine the post-order-list by a DFS-traversal. // take in a post-order argument then traces the graph in the same order // return is by reference via _post_order_list void maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector post_order, int mutate_point) { node::init_mark(); vector rev_post_order; for (size_t i = post_order.size() - 1; i >= 0; --i) { rev_post_order.push_back(post_order[i]); } int postOrderID = 0; int traversal_index = 0; // Define the range [0, n] // int n = _node_list.size() - 1; // Change 'n' to your desired upper bound // set loop variables int start = rev_post_order[0]; int i = start; int end_condition = _node_list.size(); // this loop assumes start is not from 0 // if starting index is not 0, it just increments and loops around until it encounters the element before it while (true) { if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1))) { if (!_node_list[i]->is_marked()) { _node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point); } break; } if (!_node_list[i]->is_marked()) { _node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point); } i = (i + 1) % end_condition; } } void maximal_planar_subgraph_finder::print_post_order() { int current_index; for (size_t i = 0; i < _post_order_list.size(); ++i) { current_index = _post_order_list[i]->node_id(); std::cout << current_index << ","; } std::cout << std::endl; } // this function is not used anywhere //Set the post-order-list via given list // void // maximal_planar_subgraph_finder::set_post_order(vector post_order) { // for (int i = 0; i < _node_list.size(); ++i) { // _node_list[i]->set_post_order_index(post_order[i]); // } // } //Sort the adj-list of every node increasingly according to post-order-index. void maximal_planar_subgraph_finder::sort_adj_list() { vector > vecList; vecList.resize(_post_order_list.size()); for (size_t i = 0; i < _post_order_list.size(); ++i) { for (int j = 0; j < _post_order_list[i]->degree(); ++j) { vecList[_post_order_list[i]->adj(j)->post_order_index()].push_back(_post_order_list[i]); } } for (size_t i = 0; i < _post_order_list.size(); ++i) { _post_order_list[i]->set_adj_list(vecList[i]); } } //Determine edge-list, and back-edge-list. //Order the edges properly. void maximal_planar_subgraph_finder::determine_edges() { for (size_t i = 0; i < _post_order_list.size(); ++i) { if (_post_order_list[i]->parent() == 0) continue; _post_order_list[i]->set_1st_label(_post_order_list[i]->parent()->post_order_index()); _edge_list.push_back(pair (_post_order_list[i]->parent(), _post_order_list[i])); } for (size_t i = 0; i < _post_order_list.size(); ++i) { for (int j = 0; j < _post_order_list[i]->degree(); ++j) { if (_post_order_list[i]->adj(j)->post_order_index() > static_cast(i)) break; if (_post_order_list[i]->adj(j)->get_1st_label() == static_cast(i)) continue; _back_edge_list.push_back(pair (_post_order_list[i], _post_order_list[i]->adj(j))); _is_back_edge_eliminate.push_back(false); } } for (size_t i = 0; i < _post_order_list.size(); ++i) { _post_order_list[i]->set_1st_label(INT_MAX); } } //The main part of the whole algorithm: Back-edge-traversal void maximal_planar_subgraph_finder::back_edge_traversal() { node* i_node = 0; node* current_node = 0; for (size_t i = 0; i < _back_edge_list.size(); ++i) { current_node = _back_edge_list[i].second; i_node = _back_edge_list[i].first; if (!back_edge_traversal(current_node, i_node->post_order_index())) _is_back_edge_eliminate[i] = true; } } //sub-function for the for-loop of back_edge_traversal(). bool maximal_planar_subgraph_finder::back_edge_traversal(node* traverse_node, int index) { node* parent_node; //The next node to traverse. //If the node has been deleted. if (traverse_node == 0 || traverse_node->get_2nd_label() == DELETED) { return false; } //We have reached the i-node, stop. if (traverse_node->post_order_index() == index) { return true; } //Case 1 if (traverse_node->get_2nd_label() == NOT_VISITED) { //1.1 if (traverse_node->get_1st_label() == INT_MAX) { traverse_node->set_1st_label(index); parent_node = traverse_node->parent(); } //1.2 else if (traverse_node->get_1st_label() == index) { return true; } //1.3 else if (traverse_node->get_1st_label() < index) { parent_node = construct(traverse_node); traverse_node->set_1st_label(index); } } //Case 2: Find the top-tier c-node. else { node* my_c_node = find(traverse_node); make_essential(traverse_node, my_c_node); //2.1 if (my_c_node->get_1st_label() == index) { parent_node = my_c_node; } //2.2 else if (my_c_node->get_1st_label() < index) { node* my_c_node_2 = construct(my_c_node, traverse_node); parent_node = my_c_node_2; } traverse_node->set_1st_label(index); traverse_node->set_2nd_label(NOT_VISITED); } if (back_edge_traversal(parent_node, index)) { if (parent_node != _post_order_list[index]) parent_node->add_child(traverse_node); return true; } else { eliminate(traverse_node); return false; } } //The p_node is originally a normal node in c_node's boundary cycle. //Now we transfer it to be an essential node by the following steps: //1. Create a replica-node of p_node to be representative of p_node in c_node. //2. Take out the p_node from c_node, and then set the parent of p_node to be c_node. //Note: We are not adding p_node to the c_node's children-list. void maximal_planar_subgraph_finder::make_essential(node* p_node, node* c_node) { node* sentinel = get_new_node(REPLICA_NODE); node* n0 = p_node->neighbor(0); node* n1 = p_node->neighbor(1); sentinel->init_replica(p_node, c_node); c_node->add_essential(sentinel); sentinel->set_to_boundary_path(n0, n1); sentinel->inherit_AE(p_node); n0->set_neighbor(n0->get_next(p_node), sentinel); n1->set_neighbor(n1->get_next(p_node), sentinel); p_node->set_neighbor((node*)0, (node*)0); p_node->set_parent(c_node); } //Find the top-tier c-node of the input node. //Note: We don't set the input node to be essential node of the top-tier c-node. //When terminated, the input node will be in the boundary cycle of top-tier c-node. node* maximal_planar_subgraph_finder::find(node* n) { pair, pair > boundary; node* c_node_new = 0; int c_node_size = 0; node* return_node = 0; if (n->parent() == 0) { //If n is already a node in boundary cycle. //Note: n must not be an essential node, otherwise it will never enter the function. //Find the first(nearest to n) essential node. boundary.first = parallel_search_sentinel(n, c_node_new); } else { //If n is not a node in boundary cycle. //It is in an Artificial edge. //Trim it. boundary = trim(n); //Find the first(nearest to n) essential node. boundary.first = parallel_search_sentinel(boundary.first.first, boundary.first.second, boundary.second.first, boundary.second.second, c_node_new); } //Find the c-node in the current hierachy . //If it is top-tier, return it. if (c_node_new != 0) return c_node_new; c_node_new = (boundary.first).first->get_c_node(); //If not, find the two nearest essential node, eliminate the rest nodes. c_node_size = c_node_new->c_node_size(); boundary.second = count_sentinel_elimination(boundary.first, c_node_size); //Go to the higher hierachy, and continue to find. if (c_node_new->get_2nd_label() == ARTIFICIAL_EDGE) { //A peculiar technic: //Remove all the children of c_node_new but the one that should remains(Let it be u). //Remove all other essential nodes, pretend to be a c-node of size equals 2. //Call find(u). node* u = 0; for (int i = 0; i < c_node_new->child_num(); ++i) { if (node::is_same(boundary.first.first, c_node_new->child(i)) || node::is_same(boundary.second.first, c_node_new->child(i))) { u = c_node_new->child(i); } else eliminate(c_node_new->child(i)); } c_node_new->clear_children(); c_node_new->add_child(u); c_node_new->clear_essential(); c_node_new->add_essential(boundary.first.first); c_node_new->add_essential(boundary.second.first); return_node = find(u); } else return_node = find(c_node_new); //Merge the part of boundary cycle remains in current hierachy to the top-tier c-node. merge(boundary, c_node_new); return return_node; } //The list_node is a c-node. //The boundary indicates the part of the boundary cycle of c-node needs to be merge to the higher hierachy. //Replace the list_node by boundary. //Set list_node to be DELETED. //Note: We do not eliminate anything in this function. void maximal_planar_subgraph_finder::merge(pair, pair > boundary, node* list_node) { node* n0 = list_node->neighbor(0); node* n1 = list_node->neighbor(1); node* s0, * s0_prev; node* s1, * s1_prev; if (node::is_same(boundary.first.first, n0)) { s0 = boundary.first.first; s0_prev = boundary.first.second; s1 = boundary.second.first; s1_prev = boundary.second.second; } else { s0 = boundary.second.first; s0_prev = boundary.second.second; s1 = boundary.first.first; s1_prev = boundary.first.second; } if (s0_prev == s1 && s1_prev == s0) { n0->set_neighbor(n0->get_next(list_node), n1); n1->set_neighbor(n1->get_next(list_node), n0); } else { n0->set_neighbor(n0->get_next(list_node), s0_prev); n1->set_neighbor(n1->get_next(list_node), s1_prev); s0_prev->set_neighbor(s0_prev->get_next(s0), n0); s1_prev->set_neighbor(s1_prev->get_next(s1), n1); } //Inherit AE. n0->inherit_AE(s0); n1->inherit_AE(s1); //Delete c-node list_node->set_2nd_label(DELETED); } //Set u and its subtree to be DELETED. //If u has some AE, eliminate them. //We don't do anything about u's parent, neighborhood.(Only children are affected.) //If u is a p-node, we don't eliminate anything in the lower hierachy that corresponds to the same p-node. //If u is a c-node, we eliminate all nodes in u's boundary cycle. void maximal_planar_subgraph_finder::eliminate(node* u) { if (u->get_2nd_label() == DELETED) return; u->set_2nd_label(DELETED); if (u->type() == C_NODE) { node* list_node = u->get_a_list_node(); node* n0, * n0_prev;; node* temp = 0; n0 = list_node; n0_prev = list_node->neighbor(0); while (true) { eliminate(n0); temp = n0; n0 = n0->get_next(n0_prev); n0_prev = temp; if (n0 == list_node) break; } } else if (u->type() == P_NODE) { for (int i = 0; i < u->degree(); ++i) { if (u->adj(i)->post_order_index() < u->post_order_index() && u->adj(i)->get_1st_label() == INT_MAX) eliminate(u->adj(i)); } } if (u->AE(0) != 0) eliminate(u->AE(0)); if (u->AE(1) != 0) eliminate(u->AE(1)); for (int i = 0; i < u->child_num(); ++i) { eliminate(u->child(i)); } } //Eliminate the AE of(u,v)-link that points to u.(If exists) void maximal_planar_subgraph_finder::eliminate_AE(node* u, node* v) { int v_index = v->post_order_index(); if (u->AE(0) != 0 && u->AE(0)->get_1st_label() == v_index) { eliminate (u->AE(0)); u->set_AE(0, 0); } if (u->AE(1) != 0 && u->AE(1)->get_1st_label() == v_index) { eliminate (u->AE(1)); u->set_AE(1, 0); } } //The input node u must not be c-node. //The traversed node is in the AE = (up <- down). //The returned boundary = [up, up_prev ..., down_prev, down]. //Direction: up it higher than down. pair, pair > maximal_planar_subgraph_finder::trim(node* u) { node* up = 0; node* down = 0; //Since we may do c-node extension in the future, we need to memorize next in order to deduce prev. node* up_next = 0; node* down_next = 0; node* new_AE_root = 0; //The index from small to large indicates the path that we traversed, note that u = node_list[0]. vector node_list; node* curr = u; node_list.push_back(u); //Traverse upward. while (true) { curr = curr->parent(); if (curr->type() == AE_VIRTUAL_ROOT) { up = curr->parent(); //case 1: We are in a newly created c-node. //It has only one AE, and the two neighbor-pointer point to the same one. if (up->neighbor(0) == up->neighbor(1)) { down = up->neighbor(0); up->set_neighbor(down, node_list[node_list.size()-1]); down->set_neighbor(up, node_list[0]); curr->remove_child(node_list[node_list.size()-1]); //There's no other child, just delete the AE. if (curr->child_num() == 0) { up->set_AE(0, 0); up->set_AE(1, 0); } } //case 2: General case. else { if (up->neighbor(0)->post_order_index() == curr->get_1st_label()) down = up->neighbor(0); else down = up->neighbor(1); up->set_neighbor(up->get_next(down), node_list[node_list.size()-1]); down->set_neighbor(down->get_next(up), node_list[0]); curr->remove_child(node_list[node_list.size()-1]); eliminate_AE(up, down); } break; } node_list.push_back(curr); } //Set the "downward" AE of node_list[0]. new_AE_root = get_new_node(AE_VIRTUAL_ROOT); new_AE_root->init_AE(node_list[0]); //Eliminate the children other than the path. for (size_t i = 1; i < node_list.size(); ++i) { for (int j = 0; j < node_list[i]->child_num(); ++j) { if (node_list[i]->child(j) != node_list[i-1]) eliminate(node_list[i]->child(j)); } } //Set to the boundary path. if (node_list.size() == 1) node_list[0]->set_to_boundary_path(up, down); else { node_list[0]->set_to_boundary_path(down, node_list[1]); node_list[node_list.size()-1]->set_to_boundary_path(up, node_list[node_list.size()-2]); for (size_t i = 1; i < node_list.size()-1; ++i) { node_list[i]->set_to_boundary_path(node_list[i-1], node_list[i+1]); } } //Set the next of up and down. up_next = up->get_next(node_list[node_list.size()-1]); down_next = down->get_next(node_list[0]); //Unfold the c-nodes in the node_list. for (size_t i = 0; i < node_list.size(); ++i) { if (node_list[i]->type() == C_NODE) c_node_extension(node_list[i]); } //Return the new boundary. return pair, pair > (pair(up, up->get_next(up_next)), pair(down, down->get_next(down_next))); } //The trim's sub-function. //The input c-node does not contain any children nor parent, but it has two neighbors, which is originally c-node's parent and one child. //If c-node's size equals 2, then we don't need to unfold it. //Otherwise, it must has size equals 3. //And then we find that redundent essential node, and remove the nodes that need not remains. //Merge the remain part to the higher hierachy. void maximal_planar_subgraph_finder::c_node_extension(node* c_node) { //size == 2 if (c_node->c_node_size() == 2) return; //size == 3 node* sentinel = 0; for (int i = 0; i < c_node->c_node_size(); ++i) { if (!node::is_same(c_node->essential(i), c_node->neighbor(0)) && !node::is_same(c_node->essential(i), c_node->neighbor(1))) { sentinel = c_node->essential(i); break; } } eliminate(sentinel); //The two other essential nodes and their subsequent neighbor. pair sentinel_0; pair sentinel_1; node* n0, * n0_prev = sentinel; node* n1, * n1_prev = sentinel; node* temp = 0; n0 = sentinel->neighbor(0); n1 = sentinel->neighbor(1); while (true) {//Toward the direction of n0. if (n0->is_sentinel()) {//If we meet a essential node, stop, don't remove it. sentinel_0 = pair (n0, n0->get_next(n0_prev)); break; } eliminate(n0); temp = n0; n0 = n0->get_next(n0_prev); n0_prev = temp; } while (true) {//Toward the direction of n0. if (n1->is_sentinel()) {//If we meet a essential node, stop, don't remove it. sentinel_1 = pair (n1, n1->get_next(n1_prev)); break; } eliminate(n1); temp = n1; n1 = n1->get_next(n1_prev); n1_prev = temp; } //Remember to remove the AE toward two essential nodes that is in the delete region. eliminate_AE(sentinel_0.first, sentinel_0.first->get_next(sentinel_0.second)); eliminate_AE(sentinel_1.first, sentinel_1.first->get_next(sentinel_1.second)); //Reset the neighborhood of two essential nodes. sentinel_0.first->set_neighbor(sentinel_1.first, sentinel_0.second); sentinel_1.first->set_neighbor(sentinel_0.first, sentinel_1.second); //Merge to upper boundary cycle. merge(pair, pair >(sentinel_0, sentinel_1), c_node); } //u is a normal p-node. //We'll do the work of elimination, and renewing of children-list. void maximal_planar_subgraph_finder::recursively_shaving(node* u) { node* parent_node = 0; node* node_x = 0; pair new_two_child; vector new_child_list; //p-node if (u->type() == P_NODE) { for (int i = 0; i < u->child_num(); ++i) recursively_shaving(u->child(i)); } //c-node else { //We don't need to shave if u has only one child. if (u->child_num() == 1) { recursively_shaving(u->child(0)); return; } //More than one child. parent_node = u->parent(); //Find node_x, and shave it. for (int i = 0; i < u->c_node_size(); ++i) { if (node::is_same(u->essential(i), parent_node)) { node_x = u->essential(i); new_two_child = shave(node_x); break; } } //Reset children-list and essential node. for (int i = 0; i < u->child_num(); ++i) { if (node::is_same(u->child(i), new_two_child.first) || node::is_same(u->child(i), new_two_child.second)) new_child_list.push_back(u->child(i)); else eliminate(u->child(i)); } u->clear_children(); u->clear_essential(); u->add_essential(node_x); u->add_essential(new_two_child.first); u->add_essential(new_two_child.second); u->add_child(new_child_list[0]); u->add_child(new_child_list[1]); for (int i = 0; i < u->child_num(); ++i) recursively_shaving(u->child(i)); } } //In this function, we only deal with inner part of c-node. //x,y,z are essential nodes, let y,z be x's nearest essential nodes in w's boundary cycle. //Anything outside [x,y], and[x,z] will be eliminated. //Definition of y_prev, z_prev: ..., y, y_prev, ..., x, ..., z_prev, z, ... //Return pair = (y,z). Note: What we return is the replica-node in the inner part of c-node. //The work of deleting children will be done by recursively_shaving(). pair maximal_planar_subgraph_finder::shave(node* x) { //c-node. node* c_node = x->get_c_node(); //No need to shave if child_num == 1. if (c_node->child_num() == 1) return pair((node*)0, (node*)0); //sentinel_1 = (y, y_prev). Note: At this time, c-node must has type equals ARTIFICIAL_EDGE, so no problem here. pair sentinel_1 = parallel_search_sentinel(x, c_node); //sentinel_2 = (z, z_prev). Same as above. pair sentinel_2 = count_sentinel_elimination(sentinel_1, c_node->child_num()); return pair(sentinel_1.first, sentinel_2.first); } //Use parallel_search to find essential nodes. Return (essential nodes that we find, its prev). //x is not in the searching region. //If the c-node found is top-tier, then set all the nodes during searching a pointer to c-node, set c to be that c-node, and return pair be all null. pair maximal_planar_subgraph_finder::parallel_search_sentinel(node* x, node* &c) { node* n0, * n0_prev = x; node* n1, * n1_prev = x; n0 = x->neighbor(0); n1 = x->neighbor(1); return parallel_search_sentinel(n0, n0_prev, n1, n1_prev, c); } //Another version of parallel search: n0, n0_prev, ..., n1_prev, n1 //searching region = (...n0] [n1...). Find the nearest essential node. //return (essential nodes that we find, its prev). pair maximal_planar_subgraph_finder::parallel_search_sentinel(node* n0, node* n0_prev, node* n1, node* n1_prev, node* & c) { node* temp = 0; vector traversed; while (true) { //If c-node is top-tier. //note: If c points to a c-node traversed in some previous iteration, then it must not be top-tier, so it'll not pass the if-condition. if (n0->get_c_node() != 0 && n0->get_c_node()->get_2nd_label() == NOT_VISITED) { c = n0->get_c_node(); break; } if (n1->get_c_node() != 0 && n1->get_c_node()->get_2nd_label() == NOT_VISITED) { c = n1->get_c_node(); break; } //If an essential-node found. if (n0->is_sentinel()) return pair(n0, n0_prev); if (n1->is_sentinel()) return pair(n1, n1_prev); //Just a normal node.. traversed.push_back(n0); traversed.push_back(n1); temp = n0; n0 = n0->get_next(n0_prev); n0_prev = temp; temp = n1; n1 = n1->get_next(n1_prev); n1_prev = temp; } //If the c-node found is top-tier, then assign all the traversed node a pointer to c-node. for (size_t i = 0; i < traversed.size(); ++i) traversed[i]->set_c_node(c); return pair((node*)0, (node*)0); } // sentinel_1= (y, y_prev) // return pair = (z, z_prev) // ..., y_prev, y,[ ...(contains num_sentinel-2 essential nodes)...], z, z_prev, ... : eliminate the [...] part. // Which means, num_sentinel = Number of essential nodes in the region [y, z]. // Note: y, z(Of course, and their prev,) will not be eliminated. // Note: All the node that correspond to the same one as deleted node in higher hierachy will not be affected. // The boundary cycle of c-node will be re-connected, AE be properly handled. // Do nothing outside the c-node. pair maximal_planar_subgraph_finder::count_sentinel_elimination(pair sentinel_1, int num_sentinel) { pair sentinel_2; //(z, z_prev) int count = 1;//Count the essential nodes traversed. node* n0 = sentinel_1.first->get_next(sentinel_1.second), * n0_prev = sentinel_1.first;//Going one step further. node* temp = 0; while (true) { if (n0->is_sentinel()) { ++count;//counter if (count == num_sentinel) {//We have reached y. Note: We will not eleminate y. sentinel_2.first = n0; sentinel_2.second = n0->get_next(n0_prev); break; } } eliminate(n0); temp = n0; n0 = n0->get_next(n0_prev); n0_prev = temp; } //Remember to eliminate AE toward two essential nodes that is in the deleted region. eliminate_AE(sentinel_2.first, sentinel_2.first->get_next(sentinel_2.second)); eliminate_AE(sentinel_1.first, sentinel_1.first->get_next(sentinel_1.second)); //Reset neighborhood of two essential nodes. sentinel_2.first->set_neighbor(sentinel_1.first, sentinel_2.second); sentinel_1.first->set_neighbor(sentinel_2.first, sentinel_1.second); return sentinel_2; } //Used when u has label equals , i c-node -> node_i). //We don't create child-link here. //Default label of newly contructed c-node is (INT_MAX, NOT_VISITED). node* maximal_planar_subgraph_finder::construct(node* u) { //Basic works. // int i_label = u->get_1st_label(); // unused node* node_i = _post_order_list[u->get_1st_label()]; parenting_labeling_shaving(u, node_i); //Get some new nodes. node* i_sentinel = get_new_node(REPLICA_NODE); node* u_sentinel = get_new_node(REPLICA_NODE); node* new_c_node = get_new_node(C_NODE); node* new_AE_root = get_new_node(AE_VIRTUAL_ROOT); //Setting of replica-nodes. i_sentinel->init_replica(node_i, new_c_node); u_sentinel->init_replica(u, new_c_node); for (int i = 0; i < u->child_num(); ++i) { u_sentinel->add_child(u->child(i)); } new_AE_root->init_AE(u_sentinel); //Neighborhood setting of replica-nodes in c-node. i_sentinel->set_to_boundary_path(u_sentinel, u_sentinel); u_sentinel->set_to_boundary_path(i_sentinel, i_sentinel); //Default label of c-node. new_c_node->set_1st_label(INT_MAX); new_c_node->set_2nd_label(NOT_VISITED); //Set essential node of c-node. new_c_node->add_essential(i_sentinel); new_c_node->add_essential(u_sentinel); //Parenting new_c_node->set_parent(node_i); u->set_parent(new_c_node); //Clear children-list of u_node. (which has benn transfered to AE inside c-node.) u->clear_children(); return new_c_node; } //The case when the first explored node is c-node (The input parameter c). //The p-node that trigger c(The input parameter p), has p->c parent-link already, and p is essential(not essential before triggered). //But we don't have c->p child-link yet. //We are not going to establish that child-link in this function. (Will be done in BET's main loop.) //Set c to be DELETED. node* maximal_planar_subgraph_finder::construct(node* c, node* p) { //Basic works. // int i_label = c->get_1st_label(); // unused var node* node_i = _post_order_list[c->get_1st_label()]; parenting_labeling_shaving(p, node_i); //note: Now, c must have exactly two children left, and c has a parent-link to p, p has achild link to c, too. //Remember to handle them later. //Get some new nodes. node* i_sentinel = get_new_node(REPLICA_NODE); node* new_c_node = get_new_node(C_NODE); i_sentinel->init_replica(node_i, new_c_node); //Strategy: Build thisboundary cycle first: (i, child(0), c, child(1), i). //And then find the two replica-node corresponding to the two children in c, and merge. node* ch0 = c->child(0); node* ch1 = c->child(1); node* AE_root_0 = get_new_node(AE_VIRTUAL_ROOT); node* AE_root_1 = get_new_node(AE_VIRTUAL_ROOT); AE_root_0->init_AE(ch0); AE_root_1->init_AE(ch1); i_sentinel->set_to_boundary_path(ch0, ch1); ch0->set_to_boundary_path(i_sentinel, c); ch1->set_to_boundary_path(i_sentinel, c); c->set_to_boundary_path(ch0, ch1); //find the boundary in c, merge! node* sent_0; node* sent_1; node* sent_p; for (int i = 0; i < c->c_node_size(); ++i) { if (node::is_same(c->essential(i), ch0)) sent_0 = c->essential(i); else if (node::is_same(c->essential(i), ch1)) sent_1 = c->essential(i); else if (node::is_same(c->essential(i), p)) sent_p = c->essential(i); } merge(pair, pair > (pair(sent_0, sent_0->get_next(sent_1)), pair(sent_1, sent_1->get_next(sent_0))), c); //Set essential-node of c-node. new_c_node->add_essential(i_sentinel); new_c_node->add_essential(sent_p); //Default label of c-node. new_c_node->set_1st_label(INT_MAX); new_c_node->set_2nd_label(NOT_VISITED); //Parenting. new_c_node->set_parent(node_i); //p-node, p_sent. sent_p->set_c_node(new_c_node); p->clear_children(); p->set_parent(new_c_node); //Delete c-node c->set_2nd_label(DELETED); return new_c_node; } //Some basic works in constructing c-node. //u is the first explored node in the newly constructed c-node. //In the case of newly constructed c-node itself is c-node, u will be the p-node that trigger the c-node. //And in this case, p->c parent-link has been established, but c->p child-link not. void maximal_planar_subgraph_finder::parenting_labeling_shaving(node* u, node* node_i) { //reverse parent-children relation in [u, node_i] as following. //(u-> ... ->y->i) -> (u<- ... <-y , i). vector u_i_path; u_i_path.push_back(u); while (true) { u_i_path.push_back(u_i_path[u_i_path.size()-1]->parent()); if (u_i_path[u_i_path.size()-1] == node_i) break; } for (size_t i = 0; i < u_i_path.size()-2; ++i) { u_i_path[i]->add_child(u_i_path[i+1]); u_i_path[i+1]->set_parent(u_i_path[i]); } for (size_t i = 0; i < u_i_path.size()-2; ++i) { for (int j = 0; j < u_i_path[i+1]->child_num(); ++j) { if (u_i_path[i+1]->child(j) == u_i_path[i]) { u_i_path[i+1]->remove_child(j); } } } u_i_path[0]->set_parent(0); //BFS-traversal, all labeled to , and then shave the c-node. u->recursively_labeling(); recursively_shaving(u); }