Compare commits

..

No commits in common. "trie" and "test" have entirely different histories.
trie ... test

8 changed files with 247 additions and 439 deletions

View File

@ -1 +1 @@
This branch tests the idea of storing all mutation traversals with a trie structure
This branch tests the idea of using fuzzing to choose the direction of mutation

View File

@ -10,12 +10,9 @@
#include <vector>
#include <utility>
#include <climits>
#include <limits>
#include <random>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <ogdf/fileformats/GraphIO.h>
using namespace std;
@ -60,19 +57,16 @@ public:
void set_adj_list(vector<node*> vec);
void DFS_visit(vector<node*> &dfsList, int &index);
void guided_DFS_visit(vector<node *> &dfsList,
const vector<node *> &node_list,
vector<node *> &node_list,
int &return_index,
const unordered_map<int, int> &node_id_to_pos);
void mutated_DFS_visit(vector<node *> &dfsList,
const vector<node *> &node_list,
int &index,
int &traversal_index,
const unordered_map<int, int> &node_id_to_pos,
int mutate_point,
mt19937& rng);
// custom comparator function to sort nodes according to order in given vector
bool sortByOrder(const unordered_map<int, int>& node_id_to_pos, node* a, node* b);
vector<int> rev_post_order,
int prev_node);
void mutated_DFS_visit(vector<node*> &dfsList,
vector<node*> &node_list,
int &index,
int &traversal_index,
vector<int> rev_post_order,
int mutate_point);
//PARENT-CHILDREN
void set_parent(node* n) ;
@ -161,26 +155,18 @@ class maximal_planar_subgraph_finder
public:
maximal_planar_subgraph_finder();
~maximal_planar_subgraph_finder();
// functions that prepare state
void init_from_graph(const ogdf::Graph &G);
vector<int> generate_post_order(const ogdf::Graph &G);
vector<int> generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_point);
vector<int> generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order);
void postOrderTraversal();
void guidedPostOrderTraversal(const vector<int> &post_order);
void mutatedPostOrderTraversal(const vector<int> &post_order, int mutate_point);
// compute_mps combines functionality to reduce repeating object initialization
// the results are returned by modifying mutable reference
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size);
int find_mps(const ogdf::Graph &G);
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order);
int find_mps(string input_file);
int compute_removed_edge_size(string input_file, vector<int> post_order);
vector<int> generate_post_order(string input_file);
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
node* get_new_node(node_type t);
void reset_state();
void read_from_gml(string input_file);
int output_removed_edge_size();
vector<int> return_post_order();
void postOrderTraversal();
void guidedPostOrderTraversal(vector<int> post_order);
void mutatedPostOrderTraversal(vector<int> post_order);
// void set_post_order(vector<int> post_order);
void print_post_order();
void sort_adj_list();
@ -212,19 +198,4 @@ private:
vector<node*> _new_node_list; //Newly added nodes.
};
class trie {
public:
trie(int node_id);
~trie() {};
// all functions here
void add_new_post_order(vector<int> post_order, int current_position);
bool check_post_order(vector<int> post_order, int current_position);
private:
int _node_id;
vector<trie*> _next_node_list;
};
#endif // for MPS_H
#endif

View File

@ -10,7 +10,7 @@ DEPS := $(OBJS:.o=.d)
# compiler and flags
CXX := g++
CPPFLAGS := -Iinclude -MMD -MP
CXXFLAGS := -std=c++14 -Wall
CXXFLAGS := -std=c++14 -Wall
LDFLAGS := -lOGDF
build: $(TARGET)
@ -31,4 +31,4 @@ $(BIN_DIR) $(OBJ_DIR):
.PHONY: clean
clean:
rm -r $(OBJ_DIR)
rm -r $(BIN_DIR) $(OBJ_DIR)

View File

@ -14,69 +14,59 @@
#include <ogdf/fileformats/GraphIO.h>
#define START_TEMP 100
// #define TIME
using namespace std;
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order);
int compute_removed_edge_size(string input_file, vector<int> post_order);
// these functions are defined in mps_test.cpp
// but their signatures are not in mps.h, hence they are declared here
ogdf::Graph read_from_gml(string input_file);
vector<int> generate_post_order(const ogdf::Graph &G);
vector<int> generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_start_point);
vector<int> generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order);
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size);
void vector_printer(const vector<int>& state) {
for (size_t i = 0; i < state.size(); ++i) {
std::cout << state[i] << ",";
}
std::cout << std::endl;
}
vector<int> generate_post_order(string input_file);
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
vector<int> repeated_mutation(const ogdf::Graph &G, int k_max, trie* trie_store) {
vector<int> repeated_mutation(string input_file, int k_max) {
// generate first post order
// std::cout << "generate first post order" << std::endl;
vector<int> old_order = generate_post_order(G);
vector_printer(old_order);
vector<int> temp_order = old_order;
int new_removed_size;
int old_removed_size = INT_MAX;
std::cout << "generate first post order" << std::endl;
vector<int> state_old = generate_post_order(input_file);
vector<int> state_new;
int num_removed_edges;
for (int k = 0; k < k_max; ++k) {
// compute_mps(G, dist(gen), temp_order, new_removed_size);
// we set mutate_start_point to 0 to mutate everything every round
temp_order = generate_mutated_post_order(G, temp_order, 1);
// temp_order = generate_guided_post_order(G, temp_order);
temp_order = generate_guided_post_order(G, temp_order);
// test if something is in the trie_store
// returns false when no order is found in trie_store
if (!(trie_store->check_post_order(temp_order, 0))) {
trie_store->add_new_post_order(temp_order, 0);
} else {
std::cout << "repeated mutation found" << std::endl;
}
new_removed_size = compute_removed_edge_size(G, temp_order);
// if there is an improvement
// 1. update the removed size to use the new smaller size
// 2. update the old_order to be the new_order
if (new_removed_size < old_removed_size) {
old_removed_size = new_removed_size;
old_order = temp_order;
// if there is no improvement, we revert the temp_order to the old_order
} else {
temp_order = old_order;
}
// rotate it first
std::cout << "cycle:" << k << std::endl;
std::cout << "rotate the dfs tree" << std::endl;
state_new = generate_guided_post_order(input_file, state_old);
// then the next traversal will rotate it back
std::cout << "mutate the dfs tree" << std::endl;
state_new = generate_mutated_post_order(input_file, state_new);
// num_removed_edges = compute_removed_edge_size(input_file, state_new);
// first time will rotate the tree
std::cout << "rotate the dfs tree" << std::endl;
state_new = generate_guided_post_order(input_file, state_new);
// second time will rotate back the rotated tree
std::cout << "print the mutated tree again" << std::endl;
state_new = generate_guided_post_order(input_file, state_new);
std::cout << std::endl;
}
return old_order;
return state_new;
}
void test_correctness(string input_file) {
vector<int> state_old = generate_post_order(input_file);
int num_removed_edges;
num_removed_edges = compute_removed_edge_size(input_file, state_old);
}
int get_graph_size(string input_file) {
ogdf::Graph G;
// utilize OGDF readGML
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
}
return G.numberOfNodes();
}
//-----------------------------------------------------------------------------------
// Main function.
@ -87,22 +77,16 @@ int main(int argc, char* argv[]) {
string input_file = argv[1];
int k_max = std::stoi(argv[2]);
const ogdf::Graph G = read_from_gml(input_file);
trie* trie_store = new trie(-1);
// generate order here
vector<int> post_order = repeated_mutation(G, k_max, trie_store);
// test timing of function
// test_correctness(G);
vector<int> post_order = repeated_mutation(input_file, k_max);
// test_correctness(input_file);
// // print final order and number of edges
std::cout << "---" << std::endl;
std::cout << "final report" << std::endl;
std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
std::cout << std::endl;
int removed_edges = compute_removed_edge_size(G, post_order);
std::cout << "Number of removed edges: " << removed_edges << std::endl;
// // print post_order
// std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
// std::cout << std::endl;
// int removed_edges = compute_removed_edge_size(input_file, post_order);
// std::cout << "Number of removed edges: " << removed_edges << std::endl;
return 0;
}

View File

@ -3,6 +3,7 @@
//-----------------------------------------------------------------------------------
#include "mps.h"
#include <iterator>
// #define DEBUG
@ -11,8 +12,8 @@ maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {}
//Destructor
maximal_planar_subgraph_finder::~maximal_planar_subgraph_finder() {
for (size_t i = 0; i < _node_list.size(); ++i) delete _node_list[i];
for (size_t i = 0; i < _new_node_list.size(); ++i) delete _new_node_list[i];
for (int i = 0; i < _node_list.size(); ++i) delete _node_list[i];
for (int i = 0; i < _new_node_list.size(); ++i) delete _new_node_list[i];
}
node*
@ -24,9 +25,7 @@ maximal_planar_subgraph_finder::get_new_node(node_type t) {
vector<int>
maximal_planar_subgraph_finder::return_post_order() {
vector<int> post_order;
// we have arg number of elements
post_order.reserve(_post_order_list.size()); // reserve for decreased reallocation
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
post_order.push_back(_post_order_list[i]->node_id());
}
return post_order;
@ -38,7 +37,7 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
node::init_mark();
// always start with node 0
int postOrderID = 0;
for (size_t i = 0; i < _node_list.size(); ++i) {
for (int i = 0; i < _node_list.size(); ++i) {
if (!_node_list[i]->is_marked()) {
_node_list[i]->DFS_visit(_post_order_list, postOrderID);
}
@ -50,49 +49,33 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
// take in a post-order argument then traces the graph in the same order
// return is by reference via _post_order_list
void
maximal_planar_subgraph_finder::guidedPostOrderTraversal(const vector<int> &post_order) {
maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order) {
node::init_mark();
// // implementation 1: pass reversed vector
// vector<int> rev_post_order;
// for (int i = post_order.size() - 1; i >= 0; --i) {
// rev_post_order.push_back(post_order[i]);
// }
// int start = rev_post_order[0];
// implementation 2: use unordered_map to map node_id to position in reversed post_order
unordered_map<int, int> node_id_to_pos;
node_id_to_pos.reserve(post_order.size());
int j = 0;
// we flip the post_order vector around
for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
node_id_to_pos[post_order[i]] = j++;
vector<int> rev_post_order;
for (int i = post_order.size() - 1; i >= 0; --i) {
rev_post_order.push_back(post_order[i]);
}
int postOrderID = 0;
int end_condition = _node_list.size();
// we start from the end of the post_order, which is the root node
int start = post_order[post_order.size() - 1];
int start = rev_post_order[0];
int i = start;
// reserve for _post_order_list to decrease reallocation
_post_order_list.reserve(_node_list.size());
int prev_node = INT_MAX;
while (true)
{
if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1)))
{
if (!_node_list[i]->is_marked())
{
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos);
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
}
break;
}
if (!_node_list[i]->is_marked())
{
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos);
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
}
i = (i + 1) % end_condition;
}
@ -102,49 +85,36 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(const vector<int> &post
// take in a post-order argument then traces the graph in the same order
// return is by reference via _post_order_list
void
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(const vector<int> &post_order, int mutate_start_point) {
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order) {
node::init_mark();
// // implementation 1: use vector
// vector<int> rev_post_order;
// for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
// rev_post_order.push_back(post_order[i]);
// }
// implementation 2: use unordered_map to map node_id to position in reversed post_order
unordered_map<int, int> node_id_to_pos;
node_id_to_pos.reserve(post_order.size());
int j = 0;
// we flip the post_order vector around
for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
node_id_to_pos[post_order[i]] = j++;
vector<int> rev_post_order;
for (int i = post_order.size() - 1; i >= 0; --i) {
rev_post_order.push_back(post_order[i]);
}
int postOrderID = 0;
int traversal_index = 0;
// setup random rng function
// introduce random selection
std::random_device rd;
std::mt19937 rng{rd()};
int start = 0;
// if we mutate first node, we will select a random starting node
if (mutate_start_point == 0) {
int first_value = 0;
int last_value = post_order.size() - 1;
std::uniform_int_distribution<> dist{first_value, last_value};
start = post_order[dist(rng)];
// if we don't mutate first, we just use the root node of the post_order
} else {
start = post_order[post_order.size() - 1];
}
std::mt19937 rng(rd());
// Define the range [0, n]
int n = _node_list.size() - 1; // Change 'n' to your desired upper bound
// Create a uniform distribution for the range [0, n]
std::uniform_int_distribution<int> distribution(0, n);
// Generate a random number between 0 and n (inclusive)
int mutate_point = distribution(rng);
// std::cout << "the mutate point: " << mutate_point << std::endl;
// set loop variables
int start = rev_post_order[0];
int i = start;
// reserve for _post_order_list to decrease reallocation
_post_order_list.reserve(_node_list.size());
// if mutate_point = 0
if (mutate_point == 0) {
// generate another point
start = distribution(rng);
}
int end_condition = _node_list.size();
@ -156,13 +126,13 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(const vector<int> &pos
{
if (!_node_list[i]->is_marked())
{
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, node_id_to_pos, mutate_start_point, rng);
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
}
break;
}
if (!_node_list[i]->is_marked())
{
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, node_id_to_pos, mutate_start_point, rng);
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
}
i = (i + 1) % end_condition;
}
@ -171,7 +141,7 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(const vector<int> &pos
void
maximal_planar_subgraph_finder::print_post_order() {
int current_index;
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
current_index = _post_order_list[i]->node_id();
std::cout << current_index << ",";
}
@ -193,12 +163,12 @@ void
maximal_planar_subgraph_finder::sort_adj_list() {
vector<vector<node*> > vecList;
vecList.resize(_post_order_list.size());
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
for (int j = 0; j < _post_order_list[i]->degree(); ++j) {
vecList[_post_order_list[i]->adj(j)->post_order_index()].push_back(_post_order_list[i]);
}
}
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
_post_order_list[i]->set_adj_list(vecList[i]);
}
}
@ -207,20 +177,20 @@ maximal_planar_subgraph_finder::sort_adj_list() {
//Order the edges properly.
void
maximal_planar_subgraph_finder::determine_edges() {
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
if (_post_order_list[i]->parent() == 0) continue;
_post_order_list[i]->set_1st_label(_post_order_list[i]->parent()->post_order_index());
_edge_list.push_back(pair<node*, node*> (_post_order_list[i]->parent(), _post_order_list[i]));
}
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
for (int j = 0; j < _post_order_list[i]->degree(); ++j) {
if (_post_order_list[i]->adj(j)->post_order_index() > static_cast<int>(i)) break;
if (_post_order_list[i]->adj(j)->get_1st_label() == static_cast<int>(i)) continue;
if (_post_order_list[i]->adj(j)->post_order_index() > i) break;
if (_post_order_list[i]->adj(j)->get_1st_label() == i) continue;
_back_edge_list.push_back(pair<node*, node*> (_post_order_list[i], _post_order_list[i]->adj(j)));
_is_back_edge_eliminate.push_back(false);
}
}
for (size_t i = 0; i < _post_order_list.size(); ++i) {
for (int i = 0; i < _post_order_list.size(); ++i) {
_post_order_list[i]->set_1st_label(INT_MAX);
}
}
@ -230,7 +200,7 @@ void
maximal_planar_subgraph_finder::back_edge_traversal() {
node* i_node = 0;
node* current_node = 0;
for (size_t i = 0; i < _back_edge_list.size(); ++i) {
for (int i = 0; i < _back_edge_list.size(); ++i) {
current_node = _back_edge_list[i].second;
i_node = _back_edge_list[i].first;
if (!back_edge_traversal(current_node, i_node->post_order_index())) _is_back_edge_eliminate[i] = true;
@ -507,7 +477,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
new_AE_root = get_new_node(AE_VIRTUAL_ROOT);
new_AE_root->init_AE(node_list[0]);
//Eliminate the children other than the path.
for (size_t i = 1; i < node_list.size(); ++i) {
for (int i = 1; i < node_list.size(); ++i) {
for (int j = 0; j < node_list[i]->child_num(); ++j) {
if (node_list[i]->child(j) != node_list[i-1]) eliminate(node_list[i]->child(j));
}
@ -517,7 +487,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
else {
node_list[0]->set_to_boundary_path(down, node_list[1]);
node_list[node_list.size()-1]->set_to_boundary_path(up, node_list[node_list.size()-2]);
for (size_t i = 1; i < node_list.size()-1; ++i) {
for (int i = 1; i < node_list.size()-1; ++i) {
node_list[i]->set_to_boundary_path(node_list[i-1], node_list[i+1]);
}
}
@ -525,7 +495,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
up_next = up->get_next(node_list[node_list.size()-1]);
down_next = down->get_next(node_list[0]);
//Unfold the c-nodes in the node_list.
for (size_t i = 0; i < node_list.size(); ++i) {
for (int i = 0; i < node_list.size(); ++i) {
if (node_list[i]->type() == C_NODE) c_node_extension(node_list[i]);
}
//Return the new boundary.
@ -699,7 +669,7 @@ maximal_planar_subgraph_finder::parallel_search_sentinel(node* n0, node* n0_prev
}
//If the c-node found is top-tier, then assign all the traversed node a pointer to c-node.
for (size_t i = 0; i < traversed.size(); ++i) traversed[i]->set_c_node(c);
for (int i = 0; i < traversed.size(); ++i) traversed[i]->set_c_node(c);
return pair<node*, node*>((node*)0, (node*)0);
}
@ -747,7 +717,7 @@ pair<node*, node*> maximal_planar_subgraph_finder::count_sentinel_elimination(pa
node*
maximal_planar_subgraph_finder::construct(node* u) {
//Basic works.
// int i_label = u->get_1st_label(); // unused
int i_label = u->get_1st_label();
node* node_i = _post_order_list[u->get_1st_label()];
parenting_labeling_shaving(u, node_i);
@ -795,7 +765,7 @@ maximal_planar_subgraph_finder::construct(node* u) {
node*
maximal_planar_subgraph_finder::construct(node* c, node* p) {
//Basic works.
// int i_label = c->get_1st_label(); // unused var
int i_label = c->get_1st_label();
node* node_i = _post_order_list[c->get_1st_label()];
parenting_labeling_shaving(p, node_i);
//note: Now, c must have exactly two children left, and c has a parent-link to p, p has achild link to c, too.
@ -866,11 +836,11 @@ maximal_planar_subgraph_finder::parenting_labeling_shaving(node* u, node* node_i
u_i_path.push_back(u_i_path[u_i_path.size()-1]->parent());
if (u_i_path[u_i_path.size()-1] == node_i) break;
}
for (size_t i = 0; i < u_i_path.size()-2; ++i) {
for (int i = 0; i < u_i_path.size()-2; ++i) {
u_i_path[i]->add_child(u_i_path[i+1]);
u_i_path[i+1]->set_parent(u_i_path[i]);
}
for (size_t i = 0; i < u_i_path.size()-2; ++i) {
for (int i = 0; i < u_i_path.size()-2; ++i) {
for (int j = 0; j < u_i_path[i+1]->child_num(); ++j) {
if (u_i_path[i+1]->child(j) == u_i_path[i]) {
u_i_path[i+1]->remove_child(j);

View File

@ -2,14 +2,10 @@
// Implementation of a MPS algorithm via PC-tree.
//-----------------------------------------------------------------------------------
#include <chrono>
#include "mps.h"
#include <ogdf/fileformats/GraphIO.h>
// #define DEBUG
// #define DEBUG_2
// #define TIME
#define DEBUG
//-----------------------------------------------------------------------------------
// Finding MPS
@ -17,54 +13,36 @@
// programs to call from main:
// read input file of gml format
ogdf::Graph read_from_gml(string input_file) {
ogdf::Graph G;
// utilize OGDF readGML
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
}
return G;
}
int find_mps(const ogdf::Graph &G) {
int find_mps(string input_file) {
maximal_planar_subgraph_finder m;
return m.find_mps(G);
return m.find_mps(input_file);
}
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order) {
int compute_removed_edge_size(string input_file, vector<int> post_order) {
maximal_planar_subgraph_finder m;
return m.compute_removed_edge_size(G, post_order);
return m.compute_removed_edge_size(input_file, post_order);
}
vector<int> generate_post_order(const ogdf::Graph &G) {
vector<int> generate_post_order(string input_file) {
maximal_planar_subgraph_finder m;
return m.generate_post_order(G);
return m.generate_post_order(input_file);
}
vector<int> generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_start_point) {
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order) {
maximal_planar_subgraph_finder m;
return m.generate_mutated_post_order(G, post_order, mutate_start_point);
return m.generate_mutated_post_order(input_file, post_order);
}
vector<int> generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order) {
vector<int> generate_guided_post_order(string input_file, vector<int> post_order) {
maximal_planar_subgraph_finder m;
return m.generate_guided_post_order(G, post_order);
}
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size) {
maximal_planar_subgraph_finder m;
m.compute_mps(G, mutate_point, post_order, return_edge_size);
return m.generate_guided_post_order(input_file, post_order);
}
// ---------
int maximal_planar_subgraph_finder::find_mps(const ogdf::Graph &G) {
init_from_graph(G);
int maximal_planar_subgraph_finder::find_mps(string input_file) {
read_from_gml(input_file);
postOrderTraversal();
#ifdef DEBUG
@ -77,68 +55,76 @@ int maximal_planar_subgraph_finder::find_mps(const ogdf::Graph &G) {
return output_removed_edge_size();
}
vector<int> maximal_planar_subgraph_finder::generate_post_order(const ogdf::Graph &G) {
init_from_graph(G);
vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) {
read_from_gml(input_file);
postOrderTraversal();
#ifdef DEBUG
std::cout << "standard post order traversal" << std::endl;
print_post_order();
#endif
return return_post_order();
}
// result of this will be used as input to "compute_removed_edge_size"
vector<int> maximal_planar_subgraph_finder::generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order) {
init_from_graph(G);
guidedPostOrderTraversal(post_order);
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order) {
read_from_gml(input_file);
mutatedPostOrderTraversal(post_order);
#ifdef DEBUG
std::cout << "mutated post order traversal" << std::endl;
print_post_order();
#endif
return return_post_order();
}
// result of this will be used as input to "compute_removed_edge_size"
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_start_point) {
init_from_graph(G);
mutatedPostOrderTraversal(post_order, mutate_start_point);
vector<int> maximal_planar_subgraph_finder::generate_guided_post_order(string input_file, vector<int> post_order) {
read_from_gml(input_file);
guidedPostOrderTraversal(post_order);
#ifdef DEBUG
std::cout << "guided post order traversal" << std::endl;
print_post_order();
#endif
return return_post_order();
}
int maximal_planar_subgraph_finder::compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order) {
// read_from_gml
init_from_graph(G);
// guidedPostOrderTraversal
int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file, vector<int> post_order) {
read_from_gml(input_file);
guidedPostOrderTraversal(post_order);
#ifdef DEBUG
std::cout << "guided post order traversal" << std::endl;
print_post_order();
#endif
sort_adj_list();
determine_edges();
back_edge_traversal();
determine_edges();
back_edge_traversal();
return output_removed_edge_size();
}
// depracated
void maximal_planar_subgraph_finder::reset_state() {
_post_order_list.clear();
}
// depracated
void maximal_planar_subgraph_finder::compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size) {
init_from_graph(G);
mutatedPostOrderTraversal(post_order, mutate_point);
sort_adj_list();
determine_edges();
back_edge_traversal();
return_edge_size = output_removed_edge_size();
// now we get the canonical representation of the post order
vector<int> temp_post_order = return_post_order();
reset_state(); // clear the _post_order_list
// perform guided Post Order Traversal to flip the tree
guidedPostOrderTraversal(temp_post_order);
post_order = return_post_order();
}
//-----------------------------------------------------------------------------------
// Input, output
// Imput, output
//-----------------------------------------------------------------------------------
void maximal_planar_subgraph_finder::init_from_graph(const ogdf::Graph &G) {
// read input file of gml format
void maximal_planar_subgraph_finder::read_from_gml(string input_file) {
ogdf::Graph G;
// utilize OGDF readGML
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
}
// create nodes
_node_list.reserve(G.numberOfNodes());
for (int i = 0; i < G.numberOfNodes(); ++i) {
_node_list.push_back(new node(P_NODE));
_node_list[i]->set_id(i);
@ -158,7 +144,7 @@ void maximal_planar_subgraph_finder::init_from_graph(const ogdf::Graph &G) {
// count the number of removed edges
int maximal_planar_subgraph_finder::output_removed_edge_size() {
int sum = 0;
for (size_t i = 0; i < _back_edge_list.size(); ++i) {
for (int i = 0; i < _back_edge_list.size(); ++i) {
if (_is_back_edge_eliminate[i]) ++sum;
}
return sum;

View File

@ -5,7 +5,6 @@
#include "mps.h"
// #define DEBUG
// #define DEBUG_MUTATION
//-----------------------------------------------------------------------------------
// CONSTRUCTOR
@ -37,7 +36,7 @@ void node::set_post_order_index(int i) {_post_order_index = i;}
//Only used when consturcting c-node
//The first node calling this function would not be labeled.
void node::recursively_labeling() {
for (size_t i = 0; i < _children.size(); ++i) {
for (int i = 0; i < _children.size(); ++i) {
_children[i]->_label.second = ARTIFICIAL_EDGE;
_children[i]->recursively_labeling();
}
@ -58,7 +57,7 @@ void node::set_adj_list(vector<node*> vec) {_adj_list = vec;}
void node::DFS_visit(vector<node*> &dfsList, int &index) {
mark();
for (size_t i = 0; i < _adj_list.size(); ++i) {
for (int i = 0; i < _adj_list.size(); ++i) {
if (!_adj_list[i]->is_marked()) {
_adj_list[i]->_parent = this;
_adj_list[i]->DFS_visit(dfsList, index);
@ -70,19 +69,11 @@ void node::DFS_visit(vector<node*> &dfsList, int &index) {
}
bool node::sortByOrder(const std::unordered_map<int, int>& node_id_to_pos, node* a, node* b) {
auto iter_a = node_id_to_pos.find(a->node_id());
auto iter_b = node_id_to_pos.find(b->node_id());
// second yields the position
return iter_a->second < iter_b->second;
}
void node::guided_DFS_visit(vector<node *> &dfsList,
const vector<node *> &node_list,
vector<node *> &node_list,
int &return_index,
const unordered_map<int, int> &node_id_to_pos)
vector<int> rev_post_order,
int prev_node)
{
mark();
@ -90,35 +81,28 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
// we want to select neighbors that match the rev_post_order at the specific traversal_index
// implementation 1: loop through all elements
// // create an unordered set to efficiently check for presence of an element
// std::unordered_set<int> neighbor_set;
// for (int i = 0; i < _adj_list.size(); ++i) {
// neighbor_set.insert(_adj_list[i]->node_id());
// }
// // when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// // this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// // it is ok if the neighbor was already visited before,
// // it would've been marked and will be subsequently ignored
// vector<node *> neighbor_list;
// for (int i = 0; i < rev_post_order.size(); ++i) {
// if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
// // only add if newly encountered
// if (!node_list[rev_post_order[i]]->is_marked()) {
// neighbor_list.push_back(node_list[rev_post_order[i]]);
// }
// }
// }
// implementation 2: sort elements of _adj_list
vector<node*> neighbor_list = _adj_list;
std::sort(neighbor_list.begin(), neighbor_list.end(), [this, &node_id_to_pos](node* a, node* b) {
return sortByOrder(node_id_to_pos, a, b);
});
// create an unordered set to efficiently check for presence of an element
std::unordered_set<int> neighbor_set;
for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id());
}
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// it is ok if the neighbor was already visited before,
// it would've been marked and will be subsequently ignored
vector<node *> neighbor_list;
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
// only add if newly encountered
if (!node_list[rev_post_order[i]]->is_marked()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
}
#ifdef DEBUG
std::cout << "current node:" << this->node_id() << std::endl;
std::cout << "prev node:" << prev_node << std::endl;
for (int i = 0; i < neighbor_list.size(); ++i) {
std::cout << neighbor_list[i]->node_id() << "(" << neighbor_list[i]->is_marked() << ")" << ",";
}
@ -127,10 +111,10 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
for (size_t i = 0; i < neighbor_list.size(); ++i) {
for (int i = 0; i < neighbor_list.size(); ++i) {
if (!neighbor_list[i]->is_marked()) {
neighbor_list[i]->_parent = this;
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, node_id_to_pos);
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, rev_post_order, this->node_id());
}
}
@ -139,13 +123,13 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
++return_index;
}
void node::mutated_DFS_visit(vector<node *> &dfsList,
const vector<node *> &node_list,
int &return_index,
int &traversal_index,
const unordered_map<int, int> &node_id_to_pos,
int mutate_start_point,
mt19937& rng)
void node::mutated_DFS_visit(vector<node*> &dfsList,
vector<node*> &node_list,
int &return_index,
int &traversal_index,
vector<int> rev_post_order,
int mutate_point)
{
// mark current node
@ -154,57 +138,45 @@ void node::mutated_DFS_visit(vector<node *> &dfsList,
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
// we want to select neighbors that match the rev_post_order at the specific traversal_index
// // implementation 1: naively check by running through all elements of rev_post_order
// // create an unordered set to efficiently check for presence of an element
// std::unordered_set<int> neighbor_set;
// for (size_t i = 0; i < _adj_list.size(); ++i) {
// neighbor_set.insert(_adj_list[i]->node_id());
// }
// // when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// // this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// // it is ok if the neighbor was already visited before,
// // it would've been marked and will be subsequently ignored
// vector<node *> neighbor_list;
// for (size_t i = 0; i < rev_post_order.size(); ++i) {
// if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
// neighbor_list.push_back(node_list[rev_post_order[i]]);
// }
// }
vector<node*> neighbor_list = _adj_list;
// if the current index matches or exceeds the mutate_point, then we know this is the cycle to mutate
if (traversal_index >= mutate_start_point) {
// we shuffle the neighbor list
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
// otherwise just sort based on the order set by node_id_to_pos, which is
// set by the reversed post_order
} else {
std::sort(neighbor_list.begin(), neighbor_list.end(), [this, &node_id_to_pos](node *a, node *b)
{ return sortByOrder(node_id_to_pos, a, b); });
// create an unordered set to efficiently check for presence of an element
std::unordered_set<int> neighbor_set;
for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id());
}
#ifdef DEBUG_MUTATION
std::cout << "current node:" << this->node_id() << std::endl;
for (size_t i = 0; i < neighbor_list.size(); ++i) {
std::cout << neighbor_list[i]->node_id() << "(" << neighbor_list[i]->is_marked() << ")" << ",";
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// it is ok if the neighbor was already visited before,
// it would've been marked and will be subsequently ignored
vector<node *> neighbor_list;
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
std::cout << std::endl;
#endif
// since we increment the index before this line, the current index is "index - 1"
// if the current index matches the mutate_point, then we know this is the cycle to mutate
if (traversal_index == mutate_point) {
// Create a random number generator and seed it
// std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl;
std::random_device rd;
std::mt19937 rng(rd());
// Use std::shuffle to shuffle the elements in the vector
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
}
// increment traversal index after checking
// next node will receive incremented index
traversal_index++;
for (size_t i = 0; i < neighbor_list.size(); ++i)
for (int i = 0; i < neighbor_list.size(); ++i)
{
if (!neighbor_list[i]->is_marked())
{
neighbor_list[i]->_parent = this;
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, return_index, traversal_index, node_id_to_pos, mutate_start_point, rng);
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, return_index, traversal_index, rev_post_order, mutate_point);
}
}
@ -232,7 +204,7 @@ void node::remove_child(int i) {
}
void node::remove_child(node* n) {
for (size_t i = 0; i < _children.size(); ++i) {
for (int i = 0; i < _children.size(); ++i) {
if (_children[i] == n) {
_children[i] = _children[_children.size()-1];
_children.resize(_children.size()-1);
@ -308,7 +280,7 @@ void node::init_AE(node* u) {
if (u->child_num() == 0) return;
_children = u->_children;
u->clear_children();
for (size_t i = 0; i < _children.size(); ++i) {
for (int i = 0; i < _children.size(); ++i) {
_children[i]->set_parent(this);
}
set_parent(u);

View File

@ -1,75 +0,0 @@
/* The trie data structure is used to store all DFS traversals of the tree.
* Although not strictly correct, we treat a canonical rotation representation as
* a kind of traversal order.
*
* We will store a separate traversal tree for each starting root node.
*
* The objective is so that we can identify previously tried post-orders and not
* blindly test a post-order that we already know the result to
*/
#include "mps.h"
//-----------------------------------------------------------------------------------
// CONSTRUCTOR
//-----------------------------------------------------------------------------------
trie::trie(int node_id) {
_node_id = node_id;
}
//-----------------------------------------------------------------------------------
// METHODS
//-----------------------------------------------------------------------------------
// add post order to trie structure
// root Trie node will have current_position = 0
void trie::add_new_post_order(vector<int> post_order, int current_position) {
int last_index = post_order.size() - 1;
int current_index = last_index - current_position;
// we only add when the current_index is still valid
if (current_index >= 0) {
int node_id = post_order[current_index];
// only if it doesn't exist yet
// we want to check for existing node_id in the _next_node_list
// Assuming 'it' is an iterator pointing to an element in 'vec'
auto it = std::find_if(_next_node_list.begin(), _next_node_list.end(), [node_id](trie* obj) {
return obj->_node_id == node_id;
});
// only add if not found
if (it == _next_node_list.end()) {
// std::cout << "added trie node for: " << node_id << std::endl;
trie* new_trie_node = new trie(node_id);
new_trie_node->add_new_post_order(post_order, current_position+1);
_next_node_list.push_back(new_trie_node);
// if found, then just continue
} else {
(*it)->add_new_post_order(post_order, current_position+1);
}
}
}
bool trie::check_post_order(vector<int> post_order, int current_position) {
bool return_value = false;
int last_index = post_order.size() - 1;
int current_index = last_index - current_position;
// while current_index is still valid
if (current_index >= 0) {
int node_id = post_order[current_index];
// we want to check for existing node_id in the _next_node_list
// Assuming 'it' is an iterator pointing to an element in 'vec'
auto it = std::find_if(_next_node_list.begin(), _next_node_list.end(), [node_id](trie* obj) {
return obj->_node_id == node_id;
});
// found
if (it != _next_node_list.end()) {
// std::cout << (*it)->_node_id << std::endl;
return_value = (*it)->check_post_order(post_order, current_position+1);
// not found
} else {
; // return_value is already false by default
}
} else { // we have reached the base case of reaching the end of the trie
return true;
}
return return_value;
}