Compare commits
9 Commits
Author | SHA1 | Date |
---|---|---|
Richard Wong | c58f2de199 | |
Richard Wong | 476c221cc2 | |
Richard Wong | 0e80061f44 | |
Richard Wong | fbbc957fda | |
Richard Wong | 808d7e6dae | |
Richard Wong | 33b6e58d32 | |
Richard Wong | 1c50e1fe86 | |
Richard Wong | 996222ab60 | |
Richard Wong | e35462ef2d |
|
@ -10,9 +10,12 @@
|
|||
#include <vector>
|
||||
#include <utility>
|
||||
#include <climits>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <ogdf/fileformats/GraphIO.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
@ -57,16 +60,19 @@ public:
|
|||
void set_adj_list(vector<node*> vec);
|
||||
void DFS_visit(vector<node*> &dfsList, int &index);
|
||||
void guided_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
const vector<node *> &node_list,
|
||||
int &return_index,
|
||||
vector<int> rev_post_order,
|
||||
int prev_node);
|
||||
void mutated_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &index,
|
||||
int &traversal_index,
|
||||
vector<int> rev_post_order,
|
||||
int mutate_point);
|
||||
const unordered_map<int, int> &node_id_to_pos);
|
||||
void mutated_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
int &index,
|
||||
int &traversal_index,
|
||||
const unordered_map<int, int> &node_id_to_pos,
|
||||
int mutate_point,
|
||||
mt19937 rng);
|
||||
|
||||
// custom comparator function to sort nodes according to order in given vector
|
||||
bool sortByOrder(const unordered_map<int, int>& node_id_to_pos, node* a, node* b);
|
||||
|
||||
//PARENT-CHILDREN
|
||||
void set_parent(node* n) ;
|
||||
|
@ -155,18 +161,26 @@ class maximal_planar_subgraph_finder
|
|||
public:
|
||||
maximal_planar_subgraph_finder();
|
||||
~maximal_planar_subgraph_finder();
|
||||
int find_mps(string input_file);
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order);
|
||||
vector<int> generate_post_order(string input_file);
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
|
||||
|
||||
// functions that prepare state
|
||||
void init_from_graph(const ogdf::Graph &G);
|
||||
vector<int> generate_post_order(const ogdf::Graph &G);
|
||||
vector<int> generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_point);
|
||||
vector<int> generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order);
|
||||
void postOrderTraversal();
|
||||
void guidedPostOrderTraversal(const vector<int> &post_order);
|
||||
void mutatedPostOrderTraversal(const vector<int> &post_order, int mutate_point);
|
||||
|
||||
// compute_mps combines functionality to reduce repeating object initialization
|
||||
// the results are returned by modifying mutable reference
|
||||
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size);
|
||||
|
||||
int find_mps(const ogdf::Graph &G);
|
||||
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order);
|
||||
node* get_new_node(node_type t);
|
||||
void read_from_gml(string input_file);
|
||||
void reset_state();
|
||||
int output_removed_edge_size();
|
||||
vector<int> return_post_order();
|
||||
void postOrderTraversal();
|
||||
void guidedPostOrderTraversal(vector<int> post_order);
|
||||
void mutatedPostOrderTraversal(vector<int> post_order);
|
||||
// void set_post_order(vector<int> post_order);
|
||||
void print_post_order();
|
||||
void sort_adj_list();
|
||||
|
@ -198,4 +212,4 @@ private:
|
|||
vector<node*> _new_node_list; //Newly added nodes.
|
||||
};
|
||||
|
||||
#endif
|
||||
#endif // for MPS_H
|
||||
|
|
|
@ -10,7 +10,7 @@ DEPS := $(OBJS:.o=.d)
|
|||
# compiler and flags
|
||||
CXX := g++
|
||||
CPPFLAGS := -Iinclude -MMD -MP
|
||||
CXXFLAGS := -std=c++14 -Wall
|
||||
CXXFLAGS := -std=c++14 -Wall
|
||||
LDFLAGS := -lOGDF
|
||||
|
||||
build: $(TARGET)
|
||||
|
@ -31,4 +31,4 @@ $(BIN_DIR) $(OBJ_DIR):
|
|||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
rm -r $(BIN_DIR) $(OBJ_DIR)
|
||||
rm -r $(OBJ_DIR)
|
||||
|
|
|
@ -17,56 +17,60 @@
|
|||
|
||||
using namespace std;
|
||||
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order);
|
||||
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order);
|
||||
|
||||
vector<int> generate_post_order(string input_file);
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
|
||||
// these functions are defined in mps_test.cpp
|
||||
// but their signatures are not in mps.h, hence they are declared here
|
||||
ogdf::Graph read_from_gml(string input_file);
|
||||
vector<int> generate_post_order(const ogdf::Graph &G);
|
||||
vector<int> generate_mutated_post_order(const ogdf::Graph &G, vector<int> post_order, int mutate_point);
|
||||
vector<int> generate_guided_post_order(const ogdf::Graph &G, vector<int> post_order);
|
||||
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size);
|
||||
|
||||
void vector_printer(const vector<int>& state) {
|
||||
for (size_t i = 0; i < state.size(); ++i) {
|
||||
std::cout << state[i] << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
vector<int> repeated_mutation(string input_file, int k_max) {
|
||||
vector<int> repeated_mutation(const ogdf::Graph &G, int k_max) {
|
||||
// generate first post order
|
||||
std::cout << "generate first post order" << std::endl;
|
||||
vector<int> state_old = generate_post_order(input_file);
|
||||
vector<int> state_new;
|
||||
int num_removed_edges;
|
||||
// std::cout << "generate first post order" << std::endl;
|
||||
vector<int> old_order = generate_post_order(G);
|
||||
vector_printer(old_order);
|
||||
vector<int> temp_order = old_order;
|
||||
int new_removed_size;
|
||||
int old_removed_size = INT_MAX;
|
||||
|
||||
// prepare random selection
|
||||
std::random_device rd;
|
||||
std::mt19937 gen{rd()}; // seed the generator
|
||||
int first_value = 0;
|
||||
// we want the index of the third last value
|
||||
// at a given traversal index, only the next iteration has the mutated value
|
||||
int last_value = (old_order.size() - 1) - 2;
|
||||
std::uniform_int_distribution<> dist{first_value, last_value}; // set min and max
|
||||
|
||||
for (int k = 0; k < k_max; ++k) {
|
||||
// rotate it first
|
||||
std::cout << "cycle:" << k << std::endl;
|
||||
std::cout << "rotate the dfs tree" << std::endl;
|
||||
state_new = generate_guided_post_order(input_file, state_old);
|
||||
// then the next traversal will rotate it back
|
||||
std::cout << "mutate the dfs tree" << std::endl;
|
||||
state_new = generate_mutated_post_order(input_file, state_new);
|
||||
// num_removed_edges = compute_removed_edge_size(input_file, state_new);
|
||||
// first time will rotate the tree
|
||||
std::cout << "rotate the dfs tree" << std::endl;
|
||||
state_new = generate_guided_post_order(input_file, state_new);
|
||||
// second time will rotate back the rotated tree
|
||||
std::cout << "print the mutated tree again" << std::endl;
|
||||
state_new = generate_guided_post_order(input_file, state_new);
|
||||
std::cout << std::endl;
|
||||
// function compute new post_order and new_removed_size
|
||||
// temp_order and new_removed_size will be updated with new values
|
||||
compute_mps(G, dist(gen), temp_order, new_removed_size);
|
||||
// if there is an improvement
|
||||
// 1. update the removed size to use the new smaller size
|
||||
// 2. update the old_order to be the new_order
|
||||
if (new_removed_size < old_removed_size) {
|
||||
old_removed_size = new_removed_size;
|
||||
old_order = temp_order;
|
||||
// if there is no improvement, we revert the temp_order to the old_order
|
||||
} else {
|
||||
temp_order = old_order;
|
||||
}
|
||||
}
|
||||
return state_new;
|
||||
return old_order;
|
||||
}
|
||||
|
||||
void test_correctness(string input_file) {
|
||||
vector<int> state_old = generate_post_order(input_file);
|
||||
int num_removed_edges;
|
||||
num_removed_edges = compute_removed_edge_size(input_file, state_old);
|
||||
}
|
||||
|
||||
|
||||
int get_graph_size(string input_file) {
|
||||
ogdf::Graph G;
|
||||
|
||||
// utilize OGDF readGML
|
||||
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
|
||||
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
|
||||
}
|
||||
|
||||
return G.numberOfNodes();
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// Main function.
|
||||
|
@ -77,16 +81,21 @@ int main(int argc, char* argv[]) {
|
|||
string input_file = argv[1];
|
||||
int k_max = std::stoi(argv[2]);
|
||||
|
||||
const ogdf::Graph G = read_from_gml(input_file);
|
||||
|
||||
// generate order here
|
||||
vector<int> post_order = repeated_mutation(input_file, k_max);
|
||||
// test_correctness(input_file);
|
||||
vector<int> post_order = repeated_mutation(G, k_max);
|
||||
|
||||
// test timing of function
|
||||
// test_correctness(G);
|
||||
|
||||
// // print final order and number of edges
|
||||
// // print post_order
|
||||
// std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
|
||||
// std::cout << std::endl;
|
||||
// int removed_edges = compute_removed_edge_size(input_file, post_order);
|
||||
// std::cout << "Number of removed edges: " << removed_edges << std::endl;
|
||||
std::cout << "---" << std::endl;
|
||||
std::cout << "final report" << std::endl;
|
||||
std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
int removed_edges = compute_removed_edge_size(G, post_order);
|
||||
std::cout << "Number of removed edges: " << removed_edges << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
//-----------------------------------------------------------------------------------
|
||||
|
||||
#include "mps.h"
|
||||
#include <iterator>
|
||||
|
||||
// #define DEBUG
|
||||
|
||||
|
@ -12,8 +11,8 @@ maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {}
|
|||
|
||||
//Destructor
|
||||
maximal_planar_subgraph_finder::~maximal_planar_subgraph_finder() {
|
||||
for (int i = 0; i < _node_list.size(); ++i) delete _node_list[i];
|
||||
for (int i = 0; i < _new_node_list.size(); ++i) delete _new_node_list[i];
|
||||
for (size_t i = 0; i < _node_list.size(); ++i) delete _node_list[i];
|
||||
for (size_t i = 0; i < _new_node_list.size(); ++i) delete _new_node_list[i];
|
||||
}
|
||||
|
||||
node*
|
||||
|
@ -25,7 +24,9 @@ maximal_planar_subgraph_finder::get_new_node(node_type t) {
|
|||
vector<int>
|
||||
maximal_planar_subgraph_finder::return_post_order() {
|
||||
vector<int> post_order;
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
// we have arg number of elements
|
||||
post_order.reserve(_post_order_list.size()); // reserve for decreased reallocation
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
post_order.push_back(_post_order_list[i]->node_id());
|
||||
}
|
||||
return post_order;
|
||||
|
@ -37,7 +38,7 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
|
|||
node::init_mark();
|
||||
// always start with node 0
|
||||
int postOrderID = 0;
|
||||
for (int i = 0; i < _node_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _node_list.size(); ++i) {
|
||||
if (!_node_list[i]->is_marked()) {
|
||||
_node_list[i]->DFS_visit(_post_order_list, postOrderID);
|
||||
}
|
||||
|
@ -49,33 +50,49 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
|
|||
// take in a post-order argument then traces the graph in the same order
|
||||
// return is by reference via _post_order_list
|
||||
void
|
||||
maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder::guidedPostOrderTraversal(const vector<int> &post_order) {
|
||||
node::init_mark();
|
||||
|
||||
vector<int> rev_post_order;
|
||||
for (int i = post_order.size() - 1; i >= 0; --i) {
|
||||
rev_post_order.push_back(post_order[i]);
|
||||
}
|
||||
int postOrderID = 0;
|
||||
// // implementation 1: pass reversed vector
|
||||
// vector<int> rev_post_order;
|
||||
// for (int i = post_order.size() - 1; i >= 0; --i) {
|
||||
// rev_post_order.push_back(post_order[i]);
|
||||
// }
|
||||
// int start = rev_post_order[0];
|
||||
|
||||
|
||||
// implementation 2: use unordered_map to map node_id to position in reversed post_order
|
||||
unordered_map<int, int> node_id_to_pos;
|
||||
node_id_to_pos.reserve(post_order.size());
|
||||
int j = 0;
|
||||
// we flip the post_order vector around
|
||||
for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
|
||||
node_id_to_pos[post_order[i]] = j++;
|
||||
}
|
||||
|
||||
int postOrderID = 0;
|
||||
int end_condition = _node_list.size();
|
||||
int start = rev_post_order[0];
|
||||
// we start from the end of the post_order, which is the root node
|
||||
int start = post_order[post_order.size() - 1];
|
||||
int i = start;
|
||||
|
||||
int prev_node = INT_MAX;
|
||||
|
||||
// reserve for _post_order_list to decrease reallocation
|
||||
_post_order_list.reserve(_node_list.size());
|
||||
|
||||
|
||||
while (true)
|
||||
{
|
||||
if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1)))
|
||||
{
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos);
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, node_id_to_pos);
|
||||
}
|
||||
i = (i + 1) % end_condition;
|
||||
}
|
||||
|
@ -85,36 +102,49 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order)
|
|||
// take in a post-order argument then traces the graph in the same order
|
||||
// return is by reference via _post_order_list
|
||||
void
|
||||
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(const vector<int> &post_order, int mutate_point) {
|
||||
node::init_mark();
|
||||
|
||||
vector<int> rev_post_order;
|
||||
for (int i = post_order.size() - 1; i >= 0; --i) {
|
||||
rev_post_order.push_back(post_order[i]);
|
||||
// // implementation 1: use vector
|
||||
// vector<int> rev_post_order;
|
||||
// for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
|
||||
// rev_post_order.push_back(post_order[i]);
|
||||
// }
|
||||
|
||||
// implementation 2: use unordered_map to map node_id to position in reversed post_order
|
||||
unordered_map<int, int> node_id_to_pos;
|
||||
node_id_to_pos.reserve(post_order.size());
|
||||
int j = 0;
|
||||
// we flip the post_order vector around
|
||||
for (size_t i = post_order.size() - 1; i != std::numeric_limits<size_t>::max(); --i) {
|
||||
node_id_to_pos[post_order[i]] = j++;
|
||||
}
|
||||
|
||||
int postOrderID = 0;
|
||||
int traversal_index = 0;
|
||||
|
||||
// introduce random selection
|
||||
// setup random rng function
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
// Define the range [0, n]
|
||||
int n = _node_list.size() - 1; // Change 'n' to your desired upper bound
|
||||
// Create a uniform distribution for the range [0, n]
|
||||
std::uniform_int_distribution<int> distribution(0, n);
|
||||
// Generate a random number between 0 and n (inclusive)
|
||||
int mutate_point = distribution(rng);
|
||||
// std::cout << "the mutate point: " << mutate_point << std::endl;
|
||||
std::mt19937 rng{rd()};
|
||||
|
||||
|
||||
int start = 0;
|
||||
// if we mutate first node, we will select a random starting node
|
||||
if (mutate_point == 0) {
|
||||
int first_value = 0;
|
||||
int last_value = post_order.size() - 1;
|
||||
std::uniform_int_distribution<> dist{first_value, last_value};
|
||||
start = post_order[dist(rng)];
|
||||
// if we don't mutate first, we just use the root node of the post_order
|
||||
} else {
|
||||
start = post_order[post_order.size() - 1];
|
||||
}
|
||||
|
||||
// set loop variables
|
||||
int start = rev_post_order[0];
|
||||
int i = start;
|
||||
|
||||
// if mutate_point = 0
|
||||
if (mutate_point == 0) {
|
||||
// generate another point
|
||||
start = distribution(rng);
|
||||
}
|
||||
// reserve for _post_order_list to decrease reallocation
|
||||
_post_order_list.reserve(_node_list.size());
|
||||
|
||||
|
||||
int end_condition = _node_list.size();
|
||||
|
@ -126,13 +156,13 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
|
|||
{
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
|
||||
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, node_id_to_pos, mutate_point, rng);
|
||||
}
|
||||
break;
|
||||
}
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
|
||||
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, node_id_to_pos, mutate_point, rng);
|
||||
}
|
||||
i = (i + 1) % end_condition;
|
||||
}
|
||||
|
@ -141,7 +171,7 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
|
|||
void
|
||||
maximal_planar_subgraph_finder::print_post_order() {
|
||||
int current_index;
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
current_index = _post_order_list[i]->node_id();
|
||||
std::cout << current_index << ",";
|
||||
}
|
||||
|
@ -163,12 +193,12 @@ void
|
|||
maximal_planar_subgraph_finder::sort_adj_list() {
|
||||
vector<vector<node*> > vecList;
|
||||
vecList.resize(_post_order_list.size());
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (int j = 0; j < _post_order_list[i]->degree(); ++j) {
|
||||
vecList[_post_order_list[i]->adj(j)->post_order_index()].push_back(_post_order_list[i]);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
_post_order_list[i]->set_adj_list(vecList[i]);
|
||||
}
|
||||
}
|
||||
|
@ -177,20 +207,20 @@ maximal_planar_subgraph_finder::sort_adj_list() {
|
|||
//Order the edges properly.
|
||||
void
|
||||
maximal_planar_subgraph_finder::determine_edges() {
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
if (_post_order_list[i]->parent() == 0) continue;
|
||||
_post_order_list[i]->set_1st_label(_post_order_list[i]->parent()->post_order_index());
|
||||
_edge_list.push_back(pair<node*, node*> (_post_order_list[i]->parent(), _post_order_list[i]));
|
||||
}
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (int j = 0; j < _post_order_list[i]->degree(); ++j) {
|
||||
if (_post_order_list[i]->adj(j)->post_order_index() > i) break;
|
||||
if (_post_order_list[i]->adj(j)->get_1st_label() == i) continue;
|
||||
if (_post_order_list[i]->adj(j)->post_order_index() > static_cast<int>(i)) break;
|
||||
if (_post_order_list[i]->adj(j)->get_1st_label() == static_cast<int>(i)) continue;
|
||||
_back_edge_list.push_back(pair<node*, node*> (_post_order_list[i], _post_order_list[i]->adj(j)));
|
||||
_is_back_edge_eliminate.push_back(false);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _post_order_list.size(); ++i) {
|
||||
_post_order_list[i]->set_1st_label(INT_MAX);
|
||||
}
|
||||
}
|
||||
|
@ -200,7 +230,7 @@ void
|
|||
maximal_planar_subgraph_finder::back_edge_traversal() {
|
||||
node* i_node = 0;
|
||||
node* current_node = 0;
|
||||
for (int i = 0; i < _back_edge_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _back_edge_list.size(); ++i) {
|
||||
current_node = _back_edge_list[i].second;
|
||||
i_node = _back_edge_list[i].first;
|
||||
if (!back_edge_traversal(current_node, i_node->post_order_index())) _is_back_edge_eliminate[i] = true;
|
||||
|
@ -477,7 +507,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
|
|||
new_AE_root = get_new_node(AE_VIRTUAL_ROOT);
|
||||
new_AE_root->init_AE(node_list[0]);
|
||||
//Eliminate the children other than the path.
|
||||
for (int i = 1; i < node_list.size(); ++i) {
|
||||
for (size_t i = 1; i < node_list.size(); ++i) {
|
||||
for (int j = 0; j < node_list[i]->child_num(); ++j) {
|
||||
if (node_list[i]->child(j) != node_list[i-1]) eliminate(node_list[i]->child(j));
|
||||
}
|
||||
|
@ -487,7 +517,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
|
|||
else {
|
||||
node_list[0]->set_to_boundary_path(down, node_list[1]);
|
||||
node_list[node_list.size()-1]->set_to_boundary_path(up, node_list[node_list.size()-2]);
|
||||
for (int i = 1; i < node_list.size()-1; ++i) {
|
||||
for (size_t i = 1; i < node_list.size()-1; ++i) {
|
||||
node_list[i]->set_to_boundary_path(node_list[i-1], node_list[i+1]);
|
||||
}
|
||||
}
|
||||
|
@ -495,7 +525,7 @@ maximal_planar_subgraph_finder::trim(node* u) {
|
|||
up_next = up->get_next(node_list[node_list.size()-1]);
|
||||
down_next = down->get_next(node_list[0]);
|
||||
//Unfold the c-nodes in the node_list.
|
||||
for (int i = 0; i < node_list.size(); ++i) {
|
||||
for (size_t i = 0; i < node_list.size(); ++i) {
|
||||
if (node_list[i]->type() == C_NODE) c_node_extension(node_list[i]);
|
||||
}
|
||||
//Return the new boundary.
|
||||
|
@ -669,7 +699,7 @@ maximal_planar_subgraph_finder::parallel_search_sentinel(node* n0, node* n0_prev
|
|||
}
|
||||
|
||||
//If the c-node found is top-tier, then assign all the traversed node a pointer to c-node.
|
||||
for (int i = 0; i < traversed.size(); ++i) traversed[i]->set_c_node(c);
|
||||
for (size_t i = 0; i < traversed.size(); ++i) traversed[i]->set_c_node(c);
|
||||
return pair<node*, node*>((node*)0, (node*)0);
|
||||
}
|
||||
|
||||
|
@ -717,7 +747,7 @@ pair<node*, node*> maximal_planar_subgraph_finder::count_sentinel_elimination(pa
|
|||
node*
|
||||
maximal_planar_subgraph_finder::construct(node* u) {
|
||||
//Basic works.
|
||||
int i_label = u->get_1st_label();
|
||||
// int i_label = u->get_1st_label(); // unused
|
||||
node* node_i = _post_order_list[u->get_1st_label()];
|
||||
parenting_labeling_shaving(u, node_i);
|
||||
|
||||
|
@ -765,7 +795,7 @@ maximal_planar_subgraph_finder::construct(node* u) {
|
|||
node*
|
||||
maximal_planar_subgraph_finder::construct(node* c, node* p) {
|
||||
//Basic works.
|
||||
int i_label = c->get_1st_label();
|
||||
// int i_label = c->get_1st_label(); // unused var
|
||||
node* node_i = _post_order_list[c->get_1st_label()];
|
||||
parenting_labeling_shaving(p, node_i);
|
||||
//note: Now, c must have exactly two children left, and c has a parent-link to p, p has achild link to c, too.
|
||||
|
@ -836,11 +866,11 @@ maximal_planar_subgraph_finder::parenting_labeling_shaving(node* u, node* node_i
|
|||
u_i_path.push_back(u_i_path[u_i_path.size()-1]->parent());
|
||||
if (u_i_path[u_i_path.size()-1] == node_i) break;
|
||||
}
|
||||
for (int i = 0; i < u_i_path.size()-2; ++i) {
|
||||
for (size_t i = 0; i < u_i_path.size()-2; ++i) {
|
||||
u_i_path[i]->add_child(u_i_path[i+1]);
|
||||
u_i_path[i+1]->set_parent(u_i_path[i]);
|
||||
}
|
||||
for (int i = 0; i < u_i_path.size()-2; ++i) {
|
||||
for (size_t i = 0; i < u_i_path.size()-2; ++i) {
|
||||
for (int j = 0; j < u_i_path[i+1]->child_num(); ++j) {
|
||||
if (u_i_path[i+1]->child(j) == u_i_path[i]) {
|
||||
u_i_path[i+1]->remove_child(j);
|
||||
|
|
|
@ -2,10 +2,14 @@
|
|||
// Implementation of a MPS algorithm via PC-tree.
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
||||
#include <chrono>
|
||||
#include "mps.h"
|
||||
|
||||
#include <ogdf/fileformats/GraphIO.h>
|
||||
|
||||
#define DEBUG
|
||||
// #define DEBUG
|
||||
// #define DEBUG_2
|
||||
// #define TIME
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// Finding MPS
|
||||
|
@ -13,36 +17,54 @@
|
|||
|
||||
// programs to call from main:
|
||||
|
||||
int find_mps(string input_file) {
|
||||
// read input file of gml format
|
||||
ogdf::Graph read_from_gml(string input_file) {
|
||||
ogdf::Graph G;
|
||||
|
||||
// utilize OGDF readGML
|
||||
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
|
||||
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
|
||||
}
|
||||
return G;
|
||||
}
|
||||
|
||||
|
||||
int find_mps(const ogdf::Graph &G) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.find_mps(input_file);
|
||||
return m.find_mps(G);
|
||||
}
|
||||
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order) {
|
||||
int compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.compute_removed_edge_size(input_file, post_order);
|
||||
return m.compute_removed_edge_size(G, post_order);
|
||||
}
|
||||
|
||||
vector<int> generate_post_order(string input_file) {
|
||||
vector<int> generate_post_order(const ogdf::Graph &G) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_post_order(input_file);
|
||||
return m.generate_post_order(G);
|
||||
}
|
||||
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order) {
|
||||
vector<int> generate_mutated_post_order(const ogdf::Graph &G, vector<int> post_order, int mutate_point) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_mutated_post_order(input_file, post_order);
|
||||
return m.generate_mutated_post_order(G, post_order, mutate_point);
|
||||
}
|
||||
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order) {
|
||||
vector<int> generate_guided_post_order(const ogdf::Graph &G, vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_guided_post_order(input_file, post_order);
|
||||
return m.generate_guided_post_order(G, post_order);
|
||||
}
|
||||
|
||||
|
||||
void compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
m.compute_mps(G, mutate_point, post_order, return_edge_size);
|
||||
}
|
||||
|
||||
|
||||
// ---------
|
||||
|
||||
int maximal_planar_subgraph_finder::find_mps(string input_file) {
|
||||
read_from_gml(input_file);
|
||||
int maximal_planar_subgraph_finder::find_mps(const ogdf::Graph &G) {
|
||||
init_from_graph(G);
|
||||
postOrderTraversal();
|
||||
|
||||
#ifdef DEBUG
|
||||
|
@ -55,8 +77,8 @@ int maximal_planar_subgraph_finder::find_mps(string input_file) {
|
|||
return output_removed_edge_size();
|
||||
}
|
||||
|
||||
vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) {
|
||||
read_from_gml(input_file);
|
||||
vector<int> maximal_planar_subgraph_finder::generate_post_order(const ogdf::Graph &G) {
|
||||
init_from_graph(G);
|
||||
postOrderTraversal();
|
||||
|
||||
#ifdef DEBUG
|
||||
|
@ -68,9 +90,10 @@ vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_fil
|
|||
}
|
||||
|
||||
// result of this will be used as input to "compute_removed_edge_size"
|
||||
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order) {
|
||||
read_from_gml(input_file);
|
||||
mutatedPostOrderTraversal(post_order);
|
||||
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(const ogdf::Graph &G, const vector<int> &post_order, int mutate_point) {
|
||||
init_from_graph(G);
|
||||
|
||||
mutatedPostOrderTraversal(post_order, mutate_point);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "mutated post order traversal" << std::endl;
|
||||
|
@ -81,50 +104,111 @@ vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string i
|
|||
}
|
||||
|
||||
// result of this will be used as input to "compute_removed_edge_size"
|
||||
vector<int> maximal_planar_subgraph_finder::generate_guided_post_order(string input_file, vector<int> post_order) {
|
||||
read_from_gml(input_file);
|
||||
vector<int> maximal_planar_subgraph_finder::generate_guided_post_order(const ogdf::Graph &G, const vector<int> &post_order) {
|
||||
init_from_graph(G);
|
||||
guidedPostOrderTraversal(post_order);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "guided post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
// #ifdef DEBUG
|
||||
// std::cout << "guided post order traversal" << std::endl;
|
||||
// print_post_order();
|
||||
// #endif
|
||||
|
||||
return return_post_order();
|
||||
}
|
||||
|
||||
|
||||
|
||||
int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file, vector<int> post_order) {
|
||||
read_from_gml(input_file);
|
||||
guidedPostOrderTraversal(post_order);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "guided post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
int maximal_planar_subgraph_finder::compute_removed_edge_size(const ogdf::Graph &G, vector<int> post_order) {
|
||||
// read_from_gml
|
||||
#ifdef TIME
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
#endif
|
||||
init_from_graph(G);
|
||||
#ifdef TIME
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "init from G: " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << std::endl;
|
||||
#endif
|
||||
|
||||
// guidedPostOrderTraversal
|
||||
#ifdef TIME
|
||||
start = std::chrono::high_resolution_clock::now();
|
||||
#endif
|
||||
guidedPostOrderTraversal(post_order);
|
||||
// postOrderTraversal();
|
||||
#ifdef TIME
|
||||
end = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "guidedPostOrderTraversal: " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << std::endl;
|
||||
#endif
|
||||
|
||||
// remaining procedure
|
||||
#ifdef TIME
|
||||
start = std::chrono::high_resolution_clock::now();
|
||||
#endif
|
||||
sort_adj_list();
|
||||
#ifdef TIME
|
||||
end = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "sort_adj_list: " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << std::endl;
|
||||
#endif
|
||||
|
||||
#ifdef TIME
|
||||
start = std::chrono::high_resolution_clock::now();
|
||||
#endif
|
||||
determine_edges();
|
||||
#ifdef TIME
|
||||
end = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "determine edges: " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << std::endl;
|
||||
#endif
|
||||
|
||||
#ifdef TIME
|
||||
start = std::chrono::high_resolution_clock::now();
|
||||
#endif
|
||||
back_edge_traversal();
|
||||
#ifdef TIME
|
||||
end = std::chrono::high_resolution_clock::now();
|
||||
std::cout << "back edge traversal: " << std::chrono::duration_cast<std::chrono::microseconds>(end - start).count() << std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
return output_removed_edge_size();
|
||||
}
|
||||
|
||||
void maximal_planar_subgraph_finder::reset_state() {
|
||||
_post_order_list.clear();
|
||||
}
|
||||
|
||||
void maximal_planar_subgraph_finder::compute_mps(const ogdf::Graph &G, int mutate_point, vector<int> &post_order, int &return_edge_size) {
|
||||
init_from_graph(G);
|
||||
mutatedPostOrderTraversal(post_order, mutate_point);
|
||||
sort_adj_list();
|
||||
determine_edges();
|
||||
back_edge_traversal();
|
||||
return_edge_size = output_removed_edge_size();
|
||||
|
||||
// now we get the canonical representation of the post order
|
||||
vector<int> temp_post_order = return_post_order();
|
||||
#ifdef DEBUG_2
|
||||
std::cout << "post_order pre-flip" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
reset_state(); // clear the _post_order_list
|
||||
// perform guided Post Order Traversal to flip the tree
|
||||
guidedPostOrderTraversal(temp_post_order);
|
||||
#ifdef DEBUG_2
|
||||
std::cout << "post order post_flip" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
post_order = return_post_order();
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// Imput, output
|
||||
// Input, output
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
||||
|
||||
// read input file of gml format
|
||||
void maximal_planar_subgraph_finder::read_from_gml(string input_file) {
|
||||
ogdf::Graph G;
|
||||
|
||||
// utilize OGDF readGML
|
||||
if (!ogdf::GraphIO::read(G, input_file, ogdf::GraphIO::readGML)) {
|
||||
std::cerr << "Could not read " << input_file << ".gml" << std::endl;
|
||||
}
|
||||
|
||||
void maximal_planar_subgraph_finder::init_from_graph(const ogdf::Graph &G) {
|
||||
// create nodes
|
||||
_node_list.reserve(G.numberOfNodes());
|
||||
for (int i = 0; i < G.numberOfNodes(); ++i) {
|
||||
_node_list.push_back(new node(P_NODE));
|
||||
_node_list[i]->set_id(i);
|
||||
|
@ -144,7 +228,7 @@ void maximal_planar_subgraph_finder::read_from_gml(string input_file) {
|
|||
// count the number of removed edges
|
||||
int maximal_planar_subgraph_finder::output_removed_edge_size() {
|
||||
int sum = 0;
|
||||
for (int i = 0; i < _back_edge_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _back_edge_list.size(); ++i) {
|
||||
if (_is_back_edge_eliminate[i]) ++sum;
|
||||
}
|
||||
return sum;
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#include "mps.h"
|
||||
|
||||
// #define DEBUG
|
||||
// #define DEBUG_MUTATION
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// CONSTRUCTOR
|
||||
|
@ -36,7 +37,7 @@ void node::set_post_order_index(int i) {_post_order_index = i;}
|
|||
//Only used when consturcting c-node
|
||||
//The first node calling this function would not be labeled.
|
||||
void node::recursively_labeling() {
|
||||
for (int i = 0; i < _children.size(); ++i) {
|
||||
for (size_t i = 0; i < _children.size(); ++i) {
|
||||
_children[i]->_label.second = ARTIFICIAL_EDGE;
|
||||
_children[i]->recursively_labeling();
|
||||
}
|
||||
|
@ -57,7 +58,7 @@ void node::set_adj_list(vector<node*> vec) {_adj_list = vec;}
|
|||
|
||||
void node::DFS_visit(vector<node*> &dfsList, int &index) {
|
||||
mark();
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
for (size_t i = 0; i < _adj_list.size(); ++i) {
|
||||
if (!_adj_list[i]->is_marked()) {
|
||||
_adj_list[i]->_parent = this;
|
||||
_adj_list[i]->DFS_visit(dfsList, index);
|
||||
|
@ -69,11 +70,19 @@ void node::DFS_visit(vector<node*> &dfsList, int &index) {
|
|||
}
|
||||
|
||||
|
||||
bool node::sortByOrder(const std::unordered_map<int, int>& node_id_to_pos, node* a, node* b) {
|
||||
auto iter_a = node_id_to_pos.find(a->node_id());
|
||||
auto iter_b = node_id_to_pos.find(b->node_id());
|
||||
|
||||
// second yields the position
|
||||
return iter_a->second < iter_b->second;
|
||||
}
|
||||
|
||||
|
||||
void node::guided_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
const vector<node *> &node_list,
|
||||
int &return_index,
|
||||
vector<int> rev_post_order,
|
||||
int prev_node)
|
||||
const unordered_map<int, int> &node_id_to_pos)
|
||||
{
|
||||
|
||||
mark();
|
||||
|
@ -81,28 +90,35 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
|
|||
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
|
||||
// we want to select neighbors that match the rev_post_order at the specific traversal_index
|
||||
|
||||
// create an unordered set to efficiently check for presence of an element
|
||||
std::unordered_set<int> neighbor_set;
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
neighbor_set.insert(_adj_list[i]->node_id());
|
||||
}
|
||||
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// it is ok if the neighbor was already visited before,
|
||||
// it would've been marked and will be subsequently ignored
|
||||
vector<node *> neighbor_list;
|
||||
for (int i = 0; i < rev_post_order.size(); ++i) {
|
||||
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
// only add if newly encountered
|
||||
if (!node_list[rev_post_order[i]]->is_marked()) {
|
||||
neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
}
|
||||
}
|
||||
}
|
||||
// implementation 1: loop through all elements
|
||||
// // create an unordered set to efficiently check for presence of an element
|
||||
// std::unordered_set<int> neighbor_set;
|
||||
// for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
// neighbor_set.insert(_adj_list[i]->node_id());
|
||||
// }
|
||||
// // when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// // this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// // it is ok if the neighbor was already visited before,
|
||||
// // it would've been marked and will be subsequently ignored
|
||||
// vector<node *> neighbor_list;
|
||||
// for (int i = 0; i < rev_post_order.size(); ++i) {
|
||||
// if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
// // only add if newly encountered
|
||||
// if (!node_list[rev_post_order[i]]->is_marked()) {
|
||||
// neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// implementation 2: sort elements of _adj_list
|
||||
vector<node*> neighbor_list = _adj_list;
|
||||
std::sort(neighbor_list.begin(), neighbor_list.end(), [this, &node_id_to_pos](node* a, node* b) {
|
||||
return sortByOrder(node_id_to_pos, a, b);
|
||||
});
|
||||
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "current node:" << this->node_id() << std::endl;
|
||||
std::cout << "prev node:" << prev_node << std::endl;
|
||||
for (int i = 0; i < neighbor_list.size(); ++i) {
|
||||
std::cout << neighbor_list[i]->node_id() << "(" << neighbor_list[i]->is_marked() << ")" << ",";
|
||||
}
|
||||
|
@ -111,10 +127,10 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
|
|||
|
||||
|
||||
|
||||
for (int i = 0; i < neighbor_list.size(); ++i) {
|
||||
for (size_t i = 0; i < neighbor_list.size(); ++i) {
|
||||
if (!neighbor_list[i]->is_marked()) {
|
||||
neighbor_list[i]->_parent = this;
|
||||
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, rev_post_order, this->node_id());
|
||||
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, node_id_to_pos);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -123,13 +139,13 @@ void node::guided_DFS_visit(vector<node *> &dfsList,
|
|||
++return_index;
|
||||
}
|
||||
|
||||
|
||||
void node::mutated_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &return_index,
|
||||
int &traversal_index,
|
||||
vector<int> rev_post_order,
|
||||
int mutate_point)
|
||||
void node::mutated_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
int &return_index,
|
||||
int &traversal_index,
|
||||
const unordered_map<int, int> &node_id_to_pos,
|
||||
int mutate_point,
|
||||
mt19937 rng)
|
||||
{
|
||||
|
||||
// mark current node
|
||||
|
@ -138,45 +154,57 @@ void node::mutated_DFS_visit(vector<node*> &dfsList,
|
|||
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
|
||||
// we want to select neighbors that match the rev_post_order at the specific traversal_index
|
||||
|
||||
// create an unordered set to efficiently check for presence of an element
|
||||
std::unordered_set<int> neighbor_set;
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
neighbor_set.insert(_adj_list[i]->node_id());
|
||||
}
|
||||
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// it is ok if the neighbor was already visited before,
|
||||
// it would've been marked and will be subsequently ignored
|
||||
vector<node *> neighbor_list;
|
||||
for (int i = 0; i < rev_post_order.size(); ++i) {
|
||||
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
}
|
||||
}
|
||||
// // implementation 1: naively check by running through all elements of rev_post_order
|
||||
// // create an unordered set to efficiently check for presence of an element
|
||||
// std::unordered_set<int> neighbor_set;
|
||||
// for (size_t i = 0; i < _adj_list.size(); ++i) {
|
||||
// neighbor_set.insert(_adj_list[i]->node_id());
|
||||
// }
|
||||
// // when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// // this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// // it is ok if the neighbor was already visited before,
|
||||
// // it would've been marked and will be subsequently ignored
|
||||
// vector<node *> neighbor_list;
|
||||
// for (size_t i = 0; i < rev_post_order.size(); ++i) {
|
||||
// if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
// neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
|
||||
// since we increment the index before this line, the current index is "index - 1"
|
||||
vector<node*> neighbor_list = _adj_list;
|
||||
// if the current index matches the mutate_point, then we know this is the cycle to mutate
|
||||
if (traversal_index == mutate_point) {
|
||||
// Create a random number generator and seed it
|
||||
// std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl;
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
// Use std::shuffle to shuffle the elements in the vector
|
||||
// we shuffle the neighbor list
|
||||
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
|
||||
}
|
||||
// otherwise just sort based on the order set by node_id_to_pos, which is
|
||||
// set by the reversed post_order
|
||||
} else {
|
||||
std::sort(neighbor_list.begin(), neighbor_list.end(), [this, &node_id_to_pos](node *a, node *b)
|
||||
{ return sortByOrder(node_id_to_pos, a, b); });
|
||||
}
|
||||
|
||||
|
||||
|
||||
#ifdef DEBUG_MUTATION
|
||||
std::cout << "current node:" << this->node_id() << std::endl;
|
||||
for (size_t i = 0; i < neighbor_list.size(); ++i) {
|
||||
std::cout << neighbor_list[i]->node_id() << "(" << neighbor_list[i]->is_marked() << ")" << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
// increment traversal index after checking
|
||||
// next node will receive incremented index
|
||||
traversal_index++;
|
||||
|
||||
for (int i = 0; i < neighbor_list.size(); ++i)
|
||||
for (size_t i = 0; i < neighbor_list.size(); ++i)
|
||||
{
|
||||
if (!neighbor_list[i]->is_marked())
|
||||
{
|
||||
neighbor_list[i]->_parent = this;
|
||||
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, return_index, traversal_index, rev_post_order, mutate_point);
|
||||
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, return_index, traversal_index, node_id_to_pos, mutate_point, rng);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -204,7 +232,7 @@ void node::remove_child(int i) {
|
|||
}
|
||||
|
||||
void node::remove_child(node* n) {
|
||||
for (int i = 0; i < _children.size(); ++i) {
|
||||
for (size_t i = 0; i < _children.size(); ++i) {
|
||||
if (_children[i] == n) {
|
||||
_children[i] = _children[_children.size()-1];
|
||||
_children.resize(_children.size()-1);
|
||||
|
@ -280,7 +308,7 @@ void node::init_AE(node* u) {
|
|||
if (u->child_num() == 0) return;
|
||||
_children = u->_children;
|
||||
u->clear_children();
|
||||
for (int i = 0; i < _children.size(); ++i) {
|
||||
for (size_t i = 0; i < _children.size(); ++i) {
|
||||
_children[i]->set_parent(this);
|
||||
}
|
||||
set_parent(u);
|
||||
|
|
Loading…
Reference in New Issue