Compare commits
4 Commits
test
...
measure_ba
Author | SHA1 | Date |
---|---|---|
Richard Wong | 6c14e739ae | |
Richard Wong | be49c6cfe0 | |
Richard Wong | 8794837369 | |
Richard Wong | 446ba9ed1e |
|
@ -1 +1,2 @@
|
|||
This branch tests the idea of using fuzzing to choose the direction of mutation
|
||||
The objective of this branch is to measure the number of removed edges between
|
||||
preserved and mutated parts of the DFS tree.
|
||||
|
|
|
@ -33,6 +33,12 @@ enum node_type {
|
|||
AE_VIRTUAL_ROOT = 3
|
||||
};
|
||||
|
||||
enum back_edge_type {
|
||||
RETAINED = 0,
|
||||
MUTATED_REMOVE = 1,
|
||||
NON_MUTATED_REMOVE = 2
|
||||
};
|
||||
|
||||
class node
|
||||
{
|
||||
public:
|
||||
|
@ -56,12 +62,11 @@ public:
|
|||
node* adj(int i);
|
||||
void set_adj_list(vector<node*> vec);
|
||||
void DFS_visit(vector<node*> &dfsList, int &index);
|
||||
void guided_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
int &return_index,
|
||||
vector<int> rev_post_order,
|
||||
int prev_node);
|
||||
void mutated_DFS_visit(vector<node*> &dfsList,
|
||||
void guided_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &return_index,
|
||||
vector<int> rev_post_order);
|
||||
void mutated_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &index,
|
||||
int &traversal_index,
|
||||
|
@ -156,19 +161,22 @@ public:
|
|||
maximal_planar_subgraph_finder();
|
||||
~maximal_planar_subgraph_finder();
|
||||
int find_mps(string input_file);
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order);
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order, int mutate_point);
|
||||
void print_removed_edge_stats(string input_file, vector<int> post_order, int mutate_point);
|
||||
vector<int> generate_post_order(string input_file);
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order, int mutate_point);
|
||||
void set_mutate_point(int mutate_point);
|
||||
int get_mutate_point();
|
||||
node* get_new_node(node_type t);
|
||||
void read_from_gml(string input_file);
|
||||
int output_removed_edge_size();
|
||||
void output_print_removed_edge_stats();
|
||||
int output_int_removed_edge_size();
|
||||
vector<int> return_post_order();
|
||||
void postOrderTraversal();
|
||||
void mutatedPostOrderTraversal(vector<int> post_order, int mutate_point);
|
||||
void guidedPostOrderTraversal(vector<int> post_order);
|
||||
void mutatedPostOrderTraversal(vector<int> post_order);
|
||||
// void set_post_order(vector<int> post_order);
|
||||
void print_post_order();
|
||||
void set_post_order(vector<int> post_order);
|
||||
void sort_adj_list();
|
||||
void determine_edges();
|
||||
void back_edge_traversal();
|
||||
|
@ -194,8 +202,9 @@ private:
|
|||
vector<pair<node*, node*> > _edge_list; // Edges in DFS-tree. These edges must be contained in the maximal planar subgraph that we found.
|
||||
vector<node*> _post_order_list; //The sorted version (increasing with post-order-index) of _node_list.
|
||||
vector<pair<node*, node*> > _back_edge_list; // Edges other than that in DFS-tree. (The first node's index is higher than the second's.)
|
||||
vector<bool> _is_back_edge_eliminate; //Record that if the back-edge has been eliminated or not.
|
||||
vector<back_edge_type> _is_back_edge_eliminate; //Record that if the back-edge has been eliminated or not.
|
||||
vector<node*> _new_node_list; //Newly added nodes.
|
||||
int _mutate_point; // store the mutate_point
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -31,4 +31,4 @@ $(BIN_DIR) $(OBJ_DIR):
|
|||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
rm -r $(BIN_DIR) $(OBJ_DIR)
|
||||
rm -r $(OBJ_DIR)
|
||||
|
|
|
@ -11,52 +11,60 @@
|
|||
#include <iterator>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <ogdf/fileformats/GraphIO.h>
|
||||
#define START_TEMP 100
|
||||
|
||||
using namespace std;
|
||||
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order);
|
||||
|
||||
// functions defined in mps_test.cpp
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order, int mutate_point);
|
||||
void print_removed_edge_stats(string input_file, vector<int> post_order, int mutate_point);
|
||||
vector<int> generate_post_order(string input_file);
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order);
|
||||
vector<int> generate_mutated_post_order_at_x(string input_file, vector<int> post_order, int mutate_point);
|
||||
|
||||
|
||||
vector<int> repeated_mutation(string input_file, int k_max) {
|
||||
// generate first post order
|
||||
std::cout << "generate first post order" << std::endl;
|
||||
void vector_printer(vector<int> state) {
|
||||
for (int i = 0; i < state.size(); ++i) {
|
||||
std::cout << state[i] << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void measure_removed_edges(string input_file, int k_max, int mutate_point) {
|
||||
// generate first state
|
||||
vector<int> state_old = generate_post_order(input_file);
|
||||
vector<int> state_new;
|
||||
int num_removed_edges;
|
||||
|
||||
|
||||
int removed_old = compute_removed_edge_size(input_file, state_old, mutate_point);
|
||||
int removed_new;
|
||||
|
||||
for (int k = 0; k < k_max; ++k) {
|
||||
// rotate it first
|
||||
std::cout << "cycle:" << k << std::endl;
|
||||
std::cout << "rotate the dfs tree" << std::endl;
|
||||
state_new = generate_guided_post_order(input_file, state_old);
|
||||
// then the next traversal will rotate it back
|
||||
std::cout << "mutate the dfs tree" << std::endl;
|
||||
state_new = generate_mutated_post_order(input_file, state_new);
|
||||
// num_removed_edges = compute_removed_edge_size(input_file, state_new);
|
||||
// first time will rotate the tree
|
||||
std::cout << "rotate the dfs tree" << std::endl;
|
||||
std::cout << "first post order" << std::endl;
|
||||
vector_printer(state_old);
|
||||
|
||||
// run mutation on canonical representation directly
|
||||
state_new = generate_mutated_post_order_at_x(input_file, state_old, mutate_point);
|
||||
// rotate output of mutated state to canonical representation
|
||||
state_new = generate_guided_post_order(input_file, state_new);
|
||||
// second time will rotate back the rotated tree
|
||||
std::cout << "print the mutated tree again" << std::endl;
|
||||
state_new = generate_guided_post_order(input_file, state_new);
|
||||
std::cout << std::endl;
|
||||
// tree produced should be the same as tree from mutation
|
||||
removed_new = compute_removed_edge_size(input_file, state_new, mutate_point);
|
||||
|
||||
std::cout << "mutated post order" << std::endl;
|
||||
vector_printer(state_new);
|
||||
|
||||
|
||||
// std::cout << "removed edges in old: " << removed_old << std::endl;
|
||||
// std::cout << "removed edges in new: " << removed_new << std::endl;
|
||||
print_removed_edge_stats(input_file, state_new, mutate_point);
|
||||
|
||||
}
|
||||
return state_new;
|
||||
}
|
||||
|
||||
void test_correctness(string input_file) {
|
||||
vector<int> state_old = generate_post_order(input_file);
|
||||
int num_removed_edges;
|
||||
num_removed_edges = compute_removed_edge_size(input_file, state_old);
|
||||
}
|
||||
|
||||
|
||||
int get_graph_size(string input_file) {
|
||||
ogdf::Graph G;
|
||||
|
||||
|
@ -76,17 +84,10 @@ int get_graph_size(string input_file) {
|
|||
int main(int argc, char* argv[]) {
|
||||
string input_file = argv[1];
|
||||
int k_max = std::stoi(argv[2]);
|
||||
int mutate_point = std::stoi(argv[3]);
|
||||
|
||||
// generate order here
|
||||
vector<int> post_order = repeated_mutation(input_file, k_max);
|
||||
// test_correctness(input_file);
|
||||
|
||||
// // print final order and number of edges
|
||||
// // print post_order
|
||||
// std::copy(post_order.begin(), post_order.end(), std::ostream_iterator<int>(std::cout, ","));
|
||||
// std::cout << std::endl;
|
||||
// int removed_edges = compute_removed_edge_size(input_file, post_order);
|
||||
// std::cout << "Number of removed edges: " << removed_edges << std::endl;
|
||||
measure_removed_edges(input_file, k_max, mutate_point);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -3,9 +3,7 @@
|
|||
//-----------------------------------------------------------------------------------
|
||||
|
||||
#include "mps.h"
|
||||
#include <iterator>
|
||||
|
||||
// #define DEBUG
|
||||
#include <cassert>
|
||||
|
||||
// constructor can be made empty
|
||||
maximal_planar_subgraph_finder::maximal_planar_subgraph_finder() {}
|
||||
|
@ -22,6 +20,17 @@ maximal_planar_subgraph_finder::get_new_node(node_type t) {
|
|||
return _new_node_list[_new_node_list.size()-1];
|
||||
}
|
||||
|
||||
// setter and getter for mutate_point
|
||||
void
|
||||
maximal_planar_subgraph_finder::set_mutate_point(int mutate_point) {
|
||||
_mutate_point = mutate_point;
|
||||
}
|
||||
|
||||
int
|
||||
maximal_planar_subgraph_finder::get_mutate_point() {
|
||||
return _mutate_point;
|
||||
}
|
||||
|
||||
vector<int>
|
||||
maximal_planar_subgraph_finder::return_post_order() {
|
||||
vector<int> post_order;
|
||||
|
@ -31,11 +40,11 @@ maximal_planar_subgraph_finder::return_post_order() {
|
|||
return post_order;
|
||||
}
|
||||
|
||||
|
||||
//Determine the post-order-list by a DFS-traversal.
|
||||
void
|
||||
maximal_planar_subgraph_finder::postOrderTraversal() {
|
||||
node::init_mark();
|
||||
// always start with node 0
|
||||
int postOrderID = 0;
|
||||
for (int i = 0; i < _node_list.size(); ++i) {
|
||||
if (!_node_list[i]->is_marked()) {
|
||||
|
@ -45,9 +54,7 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
|
|||
}
|
||||
|
||||
|
||||
// Determine the post-order-list by a DFS-traversal.
|
||||
// take in a post-order argument then traces the graph in the same order
|
||||
// return is by reference via _post_order_list
|
||||
//Determine the post-order-list by a DFS-traversal.
|
||||
void
|
||||
maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order) {
|
||||
node::init_mark();
|
||||
|
@ -61,33 +68,31 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order)
|
|||
int end_condition = _node_list.size();
|
||||
int start = rev_post_order[0];
|
||||
int i = start;
|
||||
|
||||
int prev_node = INT_MAX;
|
||||
while (true)
|
||||
{
|
||||
if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1)))
|
||||
{
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order);
|
||||
}
|
||||
break;
|
||||
}
|
||||
// std::cout << _node_list[i]->node_id() << ", " << !_node_list[i]->is_marked() << std::endl;
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, prev_node);
|
||||
_node_list[i]->guided_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order);
|
||||
}
|
||||
i = (i + 1) % end_condition;
|
||||
}
|
||||
}
|
||||
|
||||
//Determine the post-order-list by a DFS-traversal.
|
||||
// take in a post-order argument then traces the graph in the same order
|
||||
// return is by reference via _post_order_list
|
||||
void
|
||||
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order, int mutate_point) {
|
||||
node::init_mark();
|
||||
|
||||
// reverse post_order because reversed post_order is the traversal of the DFS tree from the starting node
|
||||
vector<int> rev_post_order;
|
||||
for (int i = post_order.size() - 1; i >= 0; --i) {
|
||||
rev_post_order.push_back(post_order[i]);
|
||||
|
@ -96,30 +101,16 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
|
|||
int traversal_index = 0;
|
||||
|
||||
// introduce random selection
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
// Define the range [0, n]
|
||||
int n = _node_list.size() - 1; // Change 'n' to your desired upper bound
|
||||
// Create a uniform distribution for the range [0, n]
|
||||
std::uniform_int_distribution<int> distribution(0, n);
|
||||
// Generate a random number between 0 and n (inclusive)
|
||||
int mutate_point = distribution(rng);
|
||||
// std::cout << "the mutate point: " << mutate_point << std::endl;
|
||||
// assert(mutate_point < n);
|
||||
|
||||
// set loop variables
|
||||
int start = rev_post_order[0];
|
||||
int i = start;
|
||||
|
||||
// if mutate_point = 0
|
||||
if (mutate_point == 0) {
|
||||
// generate another point
|
||||
start = distribution(rng);
|
||||
}
|
||||
|
||||
|
||||
int end_condition = _node_list.size();
|
||||
// this loop assumes start is not from 0
|
||||
// if starting index is not 0, it just increments and loops around until it encounters the element before it
|
||||
while (true)
|
||||
{
|
||||
if (((start > 0) && (i == (start - 1))) || ((start == 0 ) && (i == end_condition - 1)))
|
||||
|
@ -130,6 +121,7 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
|
|||
}
|
||||
break;
|
||||
}
|
||||
// std::cout << _node_list[i]->node_id() << ", " << !_node_list[i]->is_marked() << std::endl;
|
||||
if (!_node_list[i]->is_marked())
|
||||
{
|
||||
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
|
||||
|
@ -138,25 +130,15 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
|
|||
}
|
||||
}
|
||||
|
||||
void
|
||||
maximal_planar_subgraph_finder::print_post_order() {
|
||||
int current_index;
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
current_index = _post_order_list[i]->node_id();
|
||||
std::cout << current_index << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
// this function is not used anywhere
|
||||
//Set the post-order-list via given list
|
||||
// void
|
||||
// maximal_planar_subgraph_finder::set_post_order(vector<int> post_order) {
|
||||
// for (int i = 0; i < _node_list.size(); ++i) {
|
||||
// _node_list[i]->set_post_order_index(post_order[i]);
|
||||
// }
|
||||
// }
|
||||
void
|
||||
maximal_planar_subgraph_finder::set_post_order(vector<int> post_order) {
|
||||
for (int i = 0; i < _node_list.size(); ++i) {
|
||||
_node_list[i]->set_post_order_index(post_order[i]);
|
||||
}
|
||||
}
|
||||
|
||||
//Sort the adj-list of every node increasingly according to post-order-index.
|
||||
void
|
||||
|
@ -187,7 +169,7 @@ maximal_planar_subgraph_finder::determine_edges() {
|
|||
if (_post_order_list[i]->adj(j)->post_order_index() > i) break;
|
||||
if (_post_order_list[i]->adj(j)->get_1st_label() == i) continue;
|
||||
_back_edge_list.push_back(pair<node*, node*> (_post_order_list[i], _post_order_list[i]->adj(j)));
|
||||
_is_back_edge_eliminate.push_back(false);
|
||||
_is_back_edge_eliminate.push_back(RETAINED);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < _post_order_list.size(); ++i) {
|
||||
|
@ -198,13 +180,35 @@ maximal_planar_subgraph_finder::determine_edges() {
|
|||
//The main part of the whole algorithm: Back-edge-traversal
|
||||
void
|
||||
maximal_planar_subgraph_finder::back_edge_traversal() {
|
||||
node* i_node = 0;
|
||||
node* current_node = 0;
|
||||
node* i_node = nullptr;
|
||||
node* current_node = nullptr;
|
||||
int dfs_mutate_point = get_mutate_point();
|
||||
int node_list_last_index = _node_list.size() - 1;
|
||||
// dfs_mutate_point starts counting from the DFS head
|
||||
// post_order starts from the last leaf of the DFS tree
|
||||
// hence we start counting from the post_order last index
|
||||
int post_order_mutate_point = node_list_last_index - dfs_mutate_point;
|
||||
// std::cout << "post_order_mutate_point: " << post_order_mutate_point << std::endl;
|
||||
// back_edge first node is higher than the second
|
||||
for (int i = 0; i < _back_edge_list.size(); ++i) {
|
||||
// current node is the lower
|
||||
current_node = _back_edge_list[i].second;
|
||||
i_node = _back_edge_list[i].first;
|
||||
if (!back_edge_traversal(current_node, i_node->post_order_index())) _is_back_edge_eliminate[i] = true;
|
||||
// back_edge_traversal returns true if it should be included
|
||||
// false otherwise
|
||||
if (!back_edge_traversal(current_node, i_node->post_order_index())) {
|
||||
// if current_node is higher than post_order_mutate_point
|
||||
// then it is the preserved section
|
||||
if (current_node->post_order_index() > post_order_mutate_point) {
|
||||
std::cout << "(" << current_node->node_id() << "[" << current_node->post_order_index() << "]"
|
||||
<< "," << i_node->node_id() << "[" << i_node->post_order_index() << "]" << ") ";
|
||||
_is_back_edge_eliminate[i] = NON_MUTATED_REMOVE;
|
||||
} else {
|
||||
_is_back_edge_eliminate[i] = MUTATED_REMOVE;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
//sub-function for the for-loop of back_edge_traversal().
|
||||
|
|
|
@ -4,23 +4,29 @@
|
|||
|
||||
#include "mps.h"
|
||||
#include <ogdf/fileformats/GraphIO.h>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#define DEBUG
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// Finding MPS
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
||||
// programs to call from main:
|
||||
// functions to call from main:
|
||||
|
||||
int find_mps(string input_file) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.find_mps(input_file);
|
||||
}
|
||||
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order) {
|
||||
int compute_removed_edge_size(string input_file, vector<int> post_order, int mutate_point) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.compute_removed_edge_size(input_file, post_order);
|
||||
return m.compute_removed_edge_size(input_file, post_order, mutate_point);
|
||||
}
|
||||
|
||||
void print_removed_edge_stats(string input_file, vector<int> post_order, int mutate_point) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
m.print_removed_edge_stats(input_file, post_order, mutate_point);
|
||||
}
|
||||
|
||||
vector<int> generate_post_order(string input_file) {
|
||||
|
@ -28,90 +34,78 @@ vector<int> generate_post_order(string input_file) {
|
|||
return m.generate_post_order(input_file);
|
||||
}
|
||||
|
||||
vector<int> generate_mutated_post_order(string input_file, vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_mutated_post_order(input_file, post_order);
|
||||
}
|
||||
|
||||
vector<int> generate_guided_post_order(string input_file, vector<int> post_order) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_guided_post_order(input_file, post_order);
|
||||
}
|
||||
|
||||
vector<int> generate_mutated_post_order_at_x(string input_file, vector<int> post_order, int mutate_point) {
|
||||
maximal_planar_subgraph_finder m;
|
||||
return m.generate_mutated_post_order(input_file, post_order, mutate_point);
|
||||
}
|
||||
|
||||
// ---------
|
||||
|
||||
// immediate functions called by functions called from main
|
||||
|
||||
int maximal_planar_subgraph_finder::find_mps(string input_file) {
|
||||
read_from_gml(input_file);
|
||||
postOrderTraversal();
|
||||
|
||||
#ifdef DEBUG
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
sort_adj_list();
|
||||
determine_edges();
|
||||
back_edge_traversal();
|
||||
return output_removed_edge_size();
|
||||
return output_int_removed_edge_size();
|
||||
}
|
||||
|
||||
vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) {
|
||||
read_from_gml(input_file);
|
||||
set_mutate_point(INT_MAX); // essentially removed mutate_point
|
||||
postOrderTraversal();
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "standard post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
return return_post_order();
|
||||
}
|
||||
|
||||
// result of this will be used as input to "compute_removed_edge_size"
|
||||
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order) {
|
||||
read_from_gml(input_file);
|
||||
mutatedPostOrderTraversal(post_order);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "mutated post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
return return_post_order();
|
||||
}
|
||||
|
||||
// result of this will be used as input to "compute_removed_edge_size"
|
||||
vector<int> maximal_planar_subgraph_finder::generate_guided_post_order(string input_file, vector<int> post_order) {
|
||||
read_from_gml(input_file);
|
||||
set_mutate_point(INT_MAX); // essentially remove mutate point
|
||||
guidedPostOrderTraversal(post_order);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "guided post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
return return_post_order();
|
||||
}
|
||||
|
||||
|
||||
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order, int mutate_point) {
|
||||
read_from_gml(input_file);
|
||||
set_mutate_point(INT_MAX);
|
||||
mutatedPostOrderTraversal(post_order, mutate_point);
|
||||
return return_post_order();
|
||||
}
|
||||
|
||||
int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file, vector<int> post_order) {
|
||||
|
||||
int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file, vector<int> post_order, int mutate_point) {
|
||||
read_from_gml(input_file);
|
||||
set_mutate_point(mutate_point);
|
||||
guidedPostOrderTraversal(post_order);
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "guided post order traversal" << std::endl;
|
||||
print_post_order();
|
||||
#endif
|
||||
|
||||
sort_adj_list();
|
||||
determine_edges();
|
||||
back_edge_traversal();
|
||||
return output_removed_edge_size();
|
||||
return output_int_removed_edge_size();
|
||||
}
|
||||
|
||||
void maximal_planar_subgraph_finder::print_removed_edge_stats(string input_file, vector<int> post_order, int mutate_point) {
|
||||
read_from_gml(input_file);
|
||||
set_mutate_point(mutate_point);
|
||||
guidedPostOrderTraversal(post_order);
|
||||
|
||||
sort_adj_list();
|
||||
determine_edges();
|
||||
back_edge_traversal();
|
||||
output_print_removed_edge_stats();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// Imput, output
|
||||
// Input, output
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
@ -130,6 +124,14 @@ void maximal_planar_subgraph_finder::read_from_gml(string input_file) {
|
|||
_node_list[i]->set_id(i);
|
||||
}
|
||||
|
||||
// vector<ogdf::edge> unique_edges;
|
||||
// // we want to get unique edge only
|
||||
// for (ogdf::edge e : G.edges) {
|
||||
// // Check if the edge is already in the array
|
||||
// if (std::find(unique_edges.begin(), unique_edges.end(), e) == unique_edges.end())
|
||||
// unique_edges.push_back(e);
|
||||
// }
|
||||
|
||||
// create edges
|
||||
for (ogdf::edge e : G.edges) {
|
||||
ogdf::node source = e->source();
|
||||
|
@ -142,10 +144,47 @@ void maximal_planar_subgraph_finder::read_from_gml(string input_file) {
|
|||
|
||||
|
||||
// count the number of removed edges
|
||||
int maximal_planar_subgraph_finder::output_removed_edge_size() {
|
||||
void maximal_planar_subgraph_finder::output_print_removed_edge_stats() {
|
||||
int mutated_sum = 0;
|
||||
int preserved_sum = 0;
|
||||
|
||||
vector<pair<node*, node*>> mutated_removed_edges;
|
||||
vector<pair<node*, node*>> preserved_removed_edges;
|
||||
|
||||
for (int i = 0; i < _back_edge_list.size(); ++i) {
|
||||
if (_is_back_edge_eliminate[i] == MUTATED_REMOVE) {
|
||||
mutated_removed_edges.push_back(_back_edge_list[i]);
|
||||
++mutated_sum;
|
||||
}
|
||||
if (_is_back_edge_eliminate[i] == NON_MUTATED_REMOVE) {
|
||||
preserved_removed_edges.push_back(_back_edge_list[i]);
|
||||
++preserved_sum;
|
||||
}
|
||||
}
|
||||
|
||||
// print the edges
|
||||
// std::cout << "mutated removed edges: " << std::endl;
|
||||
// for (int i = 0; i < mutated_removed_edges.size(); ++i) {
|
||||
// std::cout << mutated_removed_edges[i].first->node_id() << ", " <<
|
||||
// mutated_removed_edges[i].second->node_id() << std::endl;
|
||||
// }
|
||||
|
||||
// std::cout << "preserved removed edges: " << std::endl;
|
||||
// for (int i = 0; i < preserved_removed_edges.size(); ++i) {
|
||||
// std::cout << preserved_removed_edges[i].first->node_id() << ", " <<
|
||||
// preserved_removed_edges[i].second->node_id() << std::endl;
|
||||
// }
|
||||
|
||||
std::cout << "<- sum of removed edges -> " << std::endl;
|
||||
std::cout << "mutated portion: " << mutated_sum << std::endl;
|
||||
std::cout << "preserved portion: " << preserved_sum << std::endl;
|
||||
}
|
||||
|
||||
int maximal_planar_subgraph_finder::output_int_removed_edge_size() {
|
||||
int sum = 0;
|
||||
for (int i = 0; i < _back_edge_list.size(); ++i) {
|
||||
if (_is_back_edge_eliminate[i]) ++sum;
|
||||
if (_is_back_edge_eliminate[i] != RETAINED) ++sum;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
|
@ -4,8 +4,6 @@
|
|||
|
||||
#include "mps.h"
|
||||
|
||||
// #define DEBUG
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// CONSTRUCTOR
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
@ -55,6 +53,8 @@ node* node::adj(int i) {return _adj_list[i];}
|
|||
|
||||
void node::set_adj_list(vector<node*> vec) {_adj_list = vec;}
|
||||
|
||||
// original DFS visit implementation
|
||||
// it just uses _adj_list directly as list of neighbors
|
||||
void node::DFS_visit(vector<node*> &dfsList, int &index) {
|
||||
mark();
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
|
@ -63,78 +63,19 @@ void node::DFS_visit(vector<node*> &dfsList, int &index) {
|
|||
_adj_list[i]->DFS_visit(dfsList, index);
|
||||
}
|
||||
}
|
||||
// head recursion: function call before returning result
|
||||
set_post_order_index(index);
|
||||
dfsList.push_back(this);
|
||||
++index;
|
||||
}
|
||||
|
||||
|
||||
void node::guided_DFS_visit(vector<node *> &dfsList,
|
||||
vector<node *> &node_list,
|
||||
int &return_index,
|
||||
vector<int> rev_post_order,
|
||||
int prev_node)
|
||||
vector<int> rev_post_order)
|
||||
{
|
||||
mark();
|
||||
|
||||
mark();
|
||||
|
||||
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
|
||||
// we want to select neighbors that match the rev_post_order at the specific traversal_index
|
||||
|
||||
// create an unordered set to efficiently check for presence of an element
|
||||
std::unordered_set<int> neighbor_set;
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
neighbor_set.insert(_adj_list[i]->node_id());
|
||||
}
|
||||
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// it is ok if the neighbor was already visited before,
|
||||
// it would've been marked and will be subsequently ignored
|
||||
vector<node *> neighbor_list;
|
||||
for (int i = 0; i < rev_post_order.size(); ++i) {
|
||||
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
// only add if newly encountered
|
||||
if (!node_list[rev_post_order[i]]->is_marked()) {
|
||||
neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
std::cout << "current node:" << this->node_id() << std::endl;
|
||||
std::cout << "prev node:" << prev_node << std::endl;
|
||||
for (int i = 0; i < neighbor_list.size(); ++i) {
|
||||
std::cout << neighbor_list[i]->node_id() << "(" << neighbor_list[i]->is_marked() << ")" << ",";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
for (int i = 0; i < neighbor_list.size(); ++i) {
|
||||
if (!neighbor_list[i]->is_marked()) {
|
||||
neighbor_list[i]->_parent = this;
|
||||
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, rev_post_order, this->node_id());
|
||||
}
|
||||
}
|
||||
|
||||
set_post_order_index(return_index);
|
||||
dfsList.push_back(this);
|
||||
++return_index;
|
||||
}
|
||||
|
||||
|
||||
void node::mutated_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &return_index,
|
||||
int &traversal_index,
|
||||
vector<int> rev_post_order,
|
||||
int mutate_point)
|
||||
{
|
||||
|
||||
// mark current node
|
||||
mark();
|
||||
|
||||
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
|
||||
// we want to select neighbors that match the rev_post_order at the specific traversal_index
|
||||
|
||||
|
@ -154,18 +95,57 @@ void node::mutated_DFS_visit(vector<node*> &dfsList,
|
|||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < neighbor_list.size(); ++i) {
|
||||
if (!neighbor_list[i]->is_marked()) {
|
||||
neighbor_list[i]->_parent = this;
|
||||
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, rev_post_order);
|
||||
}
|
||||
}
|
||||
|
||||
// head recursion
|
||||
set_post_order_index(return_index);
|
||||
dfsList.push_back(this);
|
||||
++return_index;
|
||||
}
|
||||
|
||||
void node::mutated_DFS_visit(vector<node*> &dfsList,
|
||||
vector<node*> &node_list,
|
||||
int &return_index,
|
||||
int &traversal_index,
|
||||
vector<int> rev_post_order,
|
||||
int mutate_point) {
|
||||
mark();
|
||||
|
||||
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
|
||||
// we want to select neighbors that match the rev_post_order at the specific traversal_index
|
||||
|
||||
// create an unordered set to efficiently check for presence of an element
|
||||
std::unordered_set<int> neighbor_set;
|
||||
for (int i = 0; i < _adj_list.size(); ++i) {
|
||||
neighbor_set.insert(_adj_list[i]->node_id());
|
||||
}
|
||||
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
|
||||
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
|
||||
// it is ok if the neighbor was already visited before,
|
||||
// it would've been marked and will be subsequently ignored
|
||||
vector<node *> neighbor_list;
|
||||
for (int i = 0; i < rev_post_order.size(); ++i) {
|
||||
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
|
||||
neighbor_list.push_back(node_list[rev_post_order[i]]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// since we increment the index before this line, the current index is "index - 1"
|
||||
// if the current index matches the mutate_point, then we know this is the cycle to mutate
|
||||
// introduce mutation at mutate_point
|
||||
if (traversal_index == mutate_point) {
|
||||
// Create a random number generator and seed it
|
||||
// std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl;
|
||||
std::random_device rd;
|
||||
std::mt19937 rng(rd());
|
||||
|
||||
// Use std::shuffle to shuffle the elements in the vector
|
||||
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
|
||||
}
|
||||
}
|
||||
|
||||
// increment traversal index after checking
|
||||
// next node will receive incremented index
|
||||
|
@ -180,11 +160,14 @@ void node::mutated_DFS_visit(vector<node*> &dfsList,
|
|||
}
|
||||
}
|
||||
|
||||
set_post_order_index(return_index);
|
||||
// head recursion like the initial dfs visit implementation
|
||||
set_post_order_index(return_index);
|
||||
dfsList.push_back(this);
|
||||
++return_index;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------------
|
||||
// PARENT-CHILDREN
|
||||
//-----------------------------------------------------------------------------------
|
||||
|
|
Loading…
Reference in New Issue