Feat: convert tail recursion to head recursion for dfs visit

This commit is contained in:
Richard Wong 2024-02-21 21:23:19 +09:00
parent 446ba9ed1e
commit 8794837369
Signed by: richard
GPG Key ID: 5BD36BA2E9EE33D0
5 changed files with 92 additions and 112 deletions

View File

@ -62,8 +62,16 @@ public:
node* adj(int i);
void set_adj_list(vector<node*> vec);
void DFS_visit(vector<node*> &dfsList, int &index);
void guided_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order);
void mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order, int mutate_point);
void guided_DFS_visit(vector<node*> &dfsList,
vector<node*> &node_list,
int &return_index,
vector<int> rev_post_order);
void mutated_DFS_visit(vector<node*> &dfsList,
vector<node*> &node_list,
int &index,
int &traversal_index,
vector<int> rev_post_order,
int mutate_point);
//PARENT-CHILDREN
void set_parent(node* n) ;
@ -163,8 +171,9 @@ public:
void read_from_gml(string input_file);
void output_print_removed_edge_size();
int output_int_removed_edge_size();
vector<int> postOrderTraversal();
vector<int> mutatedPostOrderTraversal(vector<int> post_order, int mutate_point);
vector<int> return_post_order();
void postOrderTraversal();
void mutatedPostOrderTraversal(vector<int> post_order, int mutate_point);
void guidedPostOrderTraversal(vector<int> post_order);
void set_post_order(vector<int> post_order);
void sort_adj_list();

View File

@ -45,10 +45,11 @@ void measure_removed_edges(string input_file, int k_max, int mutate_point) {
state_new = generate_mutated_post_order_at_x(input_file, state_old, mutate_point);
removed_old = compute_removed_edge_size(input_file, state_old, mutate_point);
removed_new = compute_removed_edge_size(input_file, state_new, mutate_point);
// for (int i = 0; i < state_new.size(); i++) {
// std::cout << state_new[i] << ", ";
// }
// std::cout << std::endl;
for (int i = 0; i < state_new.size(); i++) {
std::cout << state_new[i] << ", ";
}
std::cout << std::endl;
std::cout << "removed edges in old: " << removed_old << std::endl;
std::cout << "removed edges in new: " << removed_new << std::endl;

View File

@ -31,9 +31,18 @@ maximal_planar_subgraph_finder::get_mutate_point() {
return _mutate_point;
}
vector<int>
maximal_planar_subgraph_finder::return_post_order() {
vector<int> post_order;
for (int i = 0; i < _post_order_list.size(); ++i) {
post_order.push_back(_post_order_list[i]->node_id());
}
return post_order;
}
//Determine the post-order-list by a DFS-traversal.
vector<int>
void
maximal_planar_subgraph_finder::postOrderTraversal() {
node::init_mark();
int postOrderID = 0;
@ -42,12 +51,6 @@ maximal_planar_subgraph_finder::postOrderTraversal() {
_node_list[i]->DFS_visit(_post_order_list, postOrderID);
}
}
vector<int> post_order;
for (int i = 0; i < _post_order_list.size(); ++i) {
post_order.push_back(_post_order_list[i]->node_id());
}
return post_order;
}
@ -85,20 +88,22 @@ maximal_planar_subgraph_finder::guidedPostOrderTraversal(vector<int> post_order)
}
//Determine the post-order-list by a DFS-traversal.
vector<int>
void
maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order, int mutate_point) {
node::init_mark();
// reverse post_order because reversed post_order is the traversal of the DFS tree from the starting node
vector<int> rev_post_order;
for (int i = post_order.size() - 1; i >= 0; --i) {
rev_post_order.push_back(post_order[i]);
}
int postOrderID = 0;
int traversal_index = 0;
// introduce random selection
// Define the range [0, n]
int n = _node_list.size() - 1; // Change 'n' to your desired upper bound
assert(mutate_point < n);
// assert(mutate_point < n);
// set loop variables
int start = rev_post_order[0];
@ -112,27 +117,17 @@ maximal_planar_subgraph_finder::mutatedPostOrderTraversal(vector<int> post_order
{
if (!_node_list[i]->is_marked())
{
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, mutate_point);
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
}
break;
}
// std::cout << _node_list[i]->node_id() << ", " << !_node_list[i]->is_marked() << std::endl;
if (!_node_list[i]->is_marked())
{
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, rev_post_order, mutate_point);
_node_list[i]->mutated_DFS_visit(_post_order_list, _node_list, postOrderID, traversal_index, rev_post_order, mutate_point);
}
i = (i + 1) % end_condition;
}
vector<int> return_order;
for (int i = 0; i < _post_order_list.size(); ++i) {
return_order.push_back(_post_order_list[i]->node_id());
}
// we have to reverse the order as we add to list in the forward direction of recursion
// unlike that of previous methods where we add to list in the return direction of recursion
std::reverse(return_order.begin(), return_order.end());
return return_order;
}
@ -187,9 +182,9 @@ void
maximal_planar_subgraph_finder::back_edge_traversal() {
node* i_node = 0;
node* current_node = 0;
int dfs_mutate_point = get_mutate_point() + 1;
int dfs_mutate_point = get_mutate_point();
int node_list_last_index = _node_list.size() - 1;
int post_order_mutate_point = node_list_last_index - dfs_mutate_point;
int post_order_mutate_point = node_list_last_index - dfs_mutate_point - 1;
std::cout << "post_order_mutate_point: " << post_order_mutate_point << std::endl;
// back_edge first node is higher than the second
for (int i = 0; i < _back_edge_list.size(); ++i) {
@ -200,7 +195,7 @@ maximal_planar_subgraph_finder::back_edge_traversal() {
if (!back_edge_traversal(current_node, i_node->post_order_index())) {
// if current_node is higher than post_order_mutate_point
// then it is the preserved section
if (current_node->post_order_index() > post_order_mutate_point) {
if (current_node->post_order_index() >= post_order_mutate_point) {
_is_back_edge_eliminate[i] = NON_MUTATED_REMOVE;
} else {
_is_back_edge_eliminate[i] = MUTATED_REMOVE;

View File

@ -54,13 +54,15 @@ int maximal_planar_subgraph_finder::find_mps(string input_file) {
vector<int> maximal_planar_subgraph_finder::generate_post_order(string input_file) {
read_from_gml(input_file);
set_mutate_point(INT_MAX); // essentially removed mutate_point
return postOrderTraversal();
postOrderTraversal();
return return_post_order();
}
vector<int> maximal_planar_subgraph_finder::generate_mutated_post_order(string input_file, vector<int> post_order, int mutate_point) {
read_from_gml(input_file);
set_mutate_point(INT_MAX);
return mutatedPostOrderTraversal(post_order, mutate_point);
mutatedPostOrderTraversal(post_order, mutate_point);
return return_post_order();
}
@ -69,19 +71,6 @@ int maximal_planar_subgraph_finder::compute_removed_edge_size(string input_file,
set_mutate_point(mutate_point);
guidedPostOrderTraversal(post_order);
// let's reverse the order
std::reverse(_post_order_list.begin(), _post_order_list.end());
// then set post_order_index
for (int i = 0; i < _post_order_list.size(); ++i) {
_node_list[_post_order_list[i]->node_id()]->set_post_order_index(i);
}
// std::cout << "check order of duplicated traversal" << std::endl;
// for (int i = 0; i < _post_order_list.size(); ++i) {
// std::cout << _post_order_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
sort_adj_list();
determine_edges();
back_edge_traversal();
@ -93,19 +82,6 @@ void maximal_planar_subgraph_finder::print_removed_edge_size(string input_file,
set_mutate_point(mutate_point);
guidedPostOrderTraversal(post_order);
// let's reverse the order
std::reverse(_post_order_list.begin(), _post_order_list.end());
// then set post_order_index
for (int i = 0; i < _post_order_list.size(); ++i) {
_node_list[_post_order_list[i]->node_id()]->set_post_order_index(i);
}
// std::cout << "check order of duplicated traversal" << std::endl;
// for (int i = 0; i < _post_order_list.size(); ++i) {
// std::cout << _post_order_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
sort_adj_list();
determine_edges();
back_edge_traversal();

View File

@ -53,6 +53,8 @@ node* node::adj(int i) {return _adj_list[i];}
void node::set_adj_list(vector<node*> vec) {_adj_list = vec;}
// original DFS visit implementation
// it just uses _adj_list directly as list of neighbors
void node::DFS_visit(vector<node*> &dfsList, int &index) {
mark();
for (int i = 0; i < _adj_list.size(); ++i) {
@ -61,83 +63,81 @@ void node::DFS_visit(vector<node*> &dfsList, int &index) {
_adj_list[i]->DFS_visit(dfsList, index);
}
}
// head recursion: function call before returning result
set_post_order_index(index);
dfsList.push_back(this);
++index;
}
void node::guided_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order) {
void node::guided_DFS_visit(vector<node *> &dfsList,
vector<node *> &node_list,
int &return_index,
vector<int> rev_post_order)
{
mark();
// you will want to sort the neighbor nodes by the order they appear in the rev_post_order
vector<node *> neighbor_list;
std::unordered_set<int> neighbor_set;
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
// we want to select neighbors that match the rev_post_order at the specific traversal_index
// create an unordered set to efficiently check for presence of an element
std::unordered_set<int> neighbor_set;
for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id());
}
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// it is ok if the neighbor was already visited before,
// it would've been marked and will be subsequently ignored
vector<node *> neighbor_list;
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
// print the neighbors
// std::cout << "current index: " << this->node_id() << std::endl;
// for (int i = 0; i < neighbor_list.size(); ++i) {
// std::cout << neighbor_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
set_post_order_index(index);
dfsList.push_back(this);
++index;
for (int i = 0; i < neighbor_list.size(); ++i) {
if (!neighbor_list[i]->is_marked()) {
neighbor_list[i]->_parent = this;
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, index, rev_post_order);
}
neighbor_list[i]->guided_DFS_visit(dfsList, node_list, return_index, rev_post_order);
}
}
// head recursion
set_post_order_index(return_index);
dfsList.push_back(this);
++return_index;
}
void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, int &index, vector<int> rev_post_order, int mutate_point) {
void node::mutated_DFS_visit(vector<node*> &dfsList,
vector<node*> &node_list,
int &return_index,
int &traversal_index,
vector<int> rev_post_order,
int mutate_point) {
mark();
// you will want to sort the neighbor nodes by the order they appear in the rev_post_order
vector<node *> neighbor_list;
std::unordered_set<int> neighbor_set;
// purpose of this block: create list of neighbors ordered in the order they appear in rev_post_order
// we want to select neighbors that match the rev_post_order at the specific traversal_index
// create an unordered set to efficiently check for presence of an element
std::unordered_set<int> neighbor_set;
for (int i = 0; i < _adj_list.size(); ++i) {
neighbor_set.insert(_adj_list[i]->node_id());
}
// when an element in rev_post_order is found in neighbor_set, we add that to neighbor_list
// this produces a neighbor_list that follows the order by which they occur in the rev_post_order
// it is ok if the neighbor was already visited before,
// it would've been marked and will be subsequently ignored
vector<node *> neighbor_list;
for (int i = 0; i < rev_post_order.size(); ++i) {
if (neighbor_set.find(rev_post_order[i]) != neighbor_set.end()) {
neighbor_list.push_back(node_list[rev_post_order[i]]);
}
}
// print the neighbors
// std::cout << "current index: " << this->node_id() << std::endl;
// for (int i = 0; i < neighbor_list.size(); ++i) {
// std::cout << neighbor_list[i]->node_id() << " ";
// }
// std::cout << std::endl;
set_post_order_index(index);
dfsList.push_back(this);
++index;
// we have reached the mutate point
// we change the order of the neighbor list just before the mutate point
// so that the mutation begins at the mutate point
if (index - 1 == mutate_point) {
// introduce mutation at mutate_point
if (traversal_index == mutate_point) {
// Create a random number generator and seed it
// std::cout << "mutated at index: " << index - 1<< "and at mutate point: " << mutate_point << std::endl;
std::random_device rd;
@ -145,26 +145,25 @@ void node::mutated_DFS_visit(vector<node*> &dfsList, vector<node*> &node_list, i
// Use std::shuffle to shuffle the elements in the vector
std::shuffle(neighbor_list.begin(), neighbor_list.end(), rng);
}
// print the neighbors
// print the neighbors that are not yet marked
std::cout << "current index: " << index - 1 << std::endl;
std::cout << "order after mutation: ";
for (int i = 0; i < neighbor_list.size(); ++i) {
if (!neighbor_list[i]->is_marked())
std::cout << neighbor_list[i]->node_id() << " ";
}
std::cout << std::endl;
}
// increment traversal index after checking
// next node will receive incremented index
traversal_index++;
for (int i = 0; i < neighbor_list.size(); ++i)
{
if (!neighbor_list[i]->is_marked())
{
neighbor_list[i]->_parent = this;
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, index, rev_post_order, mutate_point);
neighbor_list[i]->mutated_DFS_visit(dfsList, node_list, return_index, traversal_index, rev_post_order, mutate_point);
}
}
// head recursion like the initial dfs visit implementation
set_post_order_index(return_index);
dfsList.push_back(this);
++return_index;
}