learn_jax/t5_jax_simple_parallel.py

564 lines
18 KiB
Python

# %%
import os
# Set this to True to run the model on CPU only.
USE_CPU_ONLY = False
flags = os.environ.get("XLA_FLAGS", "")
if USE_CPU_ONLY:
flags += " --xla_force_host_platform_device_count=4" # Simulate 8 devices
# Enforce CPU-only execution
os.environ["CUDA_VISIBLE_DEVICES"] = ""
os.environ["JAX_PLATFORMS"] = "cpu"
else:
# GPU flags
flags = (
# '--xla_gpu_enable_custom_fusions=true '
'--xla_gpu_triton_gemm_any=True '
# '--xla_gpu_enable_async_collectives=true '
'--xla_gpu_enable_latency_hiding_scheduler=true '
'--xla_gpu_enable_highest_priority_async_stream=true '
'--xla_gpu_enable_pipelined_all_reduce=true '
'--xla_gpu_enable_nccl_user_buffers=true '
)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
os.environ.update({
"TOKENIZERS_PARALLELISM" : "false",
"CUDA_DEVICE_MAX_CONNECTIONS" : "1",
"NCCL_LL128_BUFFSIZE": "-2",
"NCCL_LL_BUFFSIZE": "-2",
"NCCL_PROTO": "SIMPLE,LL,LL128",
"XLA_PYTHON_CLIENT_MEM_FRACTION" : "0.80",
"NCCL_NVLS_ENABLE": "1",
# "XLA_PYTHON_CLIENT_PREALLOCATE" : "false"
})
os.environ["XLA_FLAGS"] = flags
import functools
from functools import partial
from pprint import pprint
from typing import Any, Dict, Tuple, Callable, Sequence, Dict, Union
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from jax.experimental.shard_map import shard_map
from jax.sharding import Mesh, NamedSharding
# from jax.experimental.pjit import pjit # superseded by jax.jit
from jax.experimental import mesh_utils
from jax.sharding import PartitionSpec
from ml_collections import ConfigDict
import optax
import logging
import time
from datasets import Dataset, load_from_disk
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from flax.core.frozen_dict import freeze, unfreeze, FrozenDict
import flax.core
# model checkpointing and saving utilities
from flax import linen as nn
from flax.training import checkpoints, train_state
from flax import struct, serialization
from parallel.partitions import set_partitions
from tqdm import tqdm
from dataload import DataPrepare
# for memory tracking
# from jax_smi import initialise_tracking
# initialise_tracking()
PyTree = Any
Metrics = Dict[str, Tuple[jax.Array, ...]]
if USE_CPU_ONLY:
jax.config.update('jax_platform_name', 'cpu')
else:
jax.config.update("jax_default_matmul_precision", "bfloat16")
jax.config.update("jax_compilation_cache_dir", "/tmp/jax_cache")
jax.config.update("jax_persistent_cache_min_entry_size_bytes", -1)
jax.config.update("jax_persistent_cache_min_compile_time_secs", 0)
# %%
## get platform type
from jax.extend.backend import get_backend
print(get_backend().platform)
print(jax.devices())
# %%
# create mesh
print("creating mesh")
device_mesh = mesh_utils.create_device_mesh((4,1))
print(device_mesh)
mesh = Mesh(devices=device_mesh, axis_names=('data', 'model'))
print(mesh)
def mesh_sharding(pspec: PartitionSpec) -> NamedSharding:
return NamedSharding(mesh, pspec, memory_kind="device")
x_sharding = mesh_sharding(PartitionSpec('data', None)) # replicate across data axis
model_sharding=mesh_sharding(PartitionSpec(None, 'model'))
# %%
# config options
file_path = '/home/richard/Projects/learn_t5/simple_model/combined_data_t5_simple/'
save_path = '/home/richard/Projects/06_research/jax_models/model_checkpoints/simple/'
# file_path = 'combined_data'
split_datasets = load_from_disk(file_path)
training_size = len(split_datasets['train'])
# Store some constant
seed = 117
num_epochs = 40
batch_size = 64
num_train_epochs = num_epochs
per_device_train_batch_size = batch_size
train_batch_size = per_device_train_batch_size * mesh.shape['data']
per_device_eval_batch_size = batch_size
eval_batch_size = per_device_eval_batch_size * mesh.shape['data']
steps_per_epoch = training_size // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
warmup_steps = 0
learning_rate = 2e-3
weight_decay = 0.01
adam_beta1 = 0.9
adam_beta2 = 0.999
adam_epsilon = 1e-8
label_smoothing_factor = 0.0
num_beams = 1
val_max_target_length = 128
predict_with_generate = True
# %%
# prepare data
# init object
# e.g. Config
print("preparing data")
data_config = ConfigDict(
dict(
max_length=128,
pad_token_id=0,
decoder_start_token_id=0
)
)
dataprep = DataPrepare(split_datasets['train'], data_config)
# # example usage
# # %%
seed = 117
rng = jax.random.PRNGKey(seed)
train_loader = dataprep.data_loader(rng, batch_size=batch_size)
batch = next(iter(train_loader))
# %%
# from t5_model.configuration_t5 import FrozenT5Config as T5ConfigCustom
from t5_model.modeling_t5_flax import FlaxT5ForConditionalGeneration as custom_model
main_model = custom_model.from_pretrained(
"t5-base",
dtype=jnp.bfloat16,
gradient_checkpointing=True,
)
params = main_model.params
# pretrained_params = model.params
model = main_model.module
# %%
# # testing config hashability
# # some explanation:
# # The PreTrainedModel class loads a T5Config model that is not hashable because
# # it is a complicated class that pretends to be a dataclass.
# # The solution is to extract a dict from it, then make a ConfigDict from
# # ml_collections library so that we can get values via the "." operator.
# # also, we can switch between FrozenConfigDict and ConfigDict, allowing us to
# # modify the config before passing to the next layer
# from transformers import T5Config
# from t5_model.configuration_t5 import FrozenT5Config
# from ml_collections import ConfigDict, FrozenConfigDict
#
# config = T5Config.from_pretrained("t5-base").to_dict()
# config.pop('architectures')
# config.pop('id2label')
# # test if it works
# frozen_config = FrozenConfigDict(config)
# # test hash
# hash(frozen_config)
# %%
# # print model
# rng, input_rng = jax.random.split(rng)
# model.tabulate(
# input_rng,
# input_ids=batch['input_ids'],
# attention_mask=batch['attention_mask'],
# decoder_input_ids=batch['decoder_input_ids'],
# decoder_attention_mask=batch['decoder_attention_mask'],
# console_kwargs={"force_jupyter": True}
# )
# %%
# optimizers
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.ndarray]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
training_size,
train_batch_size,
num_train_epochs,
warmup_steps,
learning_rate,
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
# find out all LayerNorm parameters
layer_norm_candidates = ["final_layer_norm", "layer_norm"]
layer_norm_named_params = {
layer[-2:]
for layer_norm_name in layer_norm_candidates
for layer in flat_params.keys()
if layer_norm_name in "".join(layer).lower()
}
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=adam_beta1,
b2=adam_beta2,
eps=adam_epsilon,
weight_decay=weight_decay,
mask=decay_mask_fn,
)
# %%
print("compile")
# enable bf16
# enable only for dense, some transformer sections, and shared
def create_mask_for_layer_norm(params):
flat_params = traverse_util.flatten_dict(params)
mask = {
# path: not (
# (path[-2] == "layer_norm" and path[-1] == "weight") or
# (path[-2] == "final_layer_norm" and path[-1] == "weight") or
# (path[-2] == "o" and path[-1] == "kernel")
# )
# for path in flat_params
path: (
(path[-2] == "wi" and path[-1] == "weight") or
(path[-2] == "wo" and path[-1] == "weight") or
(path[-2] == "k" and path[-1] == "kernel") or
(path[-2] == "q" and path[-1] == "kernel") or
(path[-2] == "v" and path[-1] == "kernel") or
(path[-2] == "shared" and path[-1] == "embedding")
) for path in flat_params
}
mask = traverse_util.unflatten_dict(mask)
return mask
# borrowed from transformers modeling_flax_utils
def cast_floating_to(params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
"""
Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
"""
# taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
def conditional_cast(param):
if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
param = param.astype(dtype)
return param
if mask is None:
return jax.tree_util.tree_map(conditional_cast, params)
flat_params = traverse_util.flatten_dict(params)
flat_mask, _ = jax.tree_util.tree_flatten(mask)
for masked, key in zip(flat_mask, sorted(flat_params.keys())):
if masked:
flat_params[key] = conditional_cast(flat_params[key])
return traverse_util.unflatten_dict(flat_params)
# create init_fn to produce sharded state
def init_fn(params, model, optimizer):
# do be careful with the model init
# imported models might have complicated init methods
mask = create_mask_for_layer_norm(params)
# override params with bfloat version
params= cast_floating_to(params, jnp.bfloat16, mask)
state = train_state.TrainState.create( # Create a `TrainState`.
apply_fn=model.apply,
params=params,
tx=optimizer)
return state
abstract_variables = jax.eval_shape(
functools.partial(init_fn, model=model, optimizer=adamw), params)
# jax.sharding: describes how a jax.Array is laid out across devices
state_sharding = nn.get_sharding(abstract_variables, mesh)
# print(state_sharding)
# %%
# replace the params tree with the new modified tree
# create partitions for model
from parallel.partitions import set_partitions
# set_partitions freezes the params on return
model_part_spec = set_partitions(unfreeze(params))
# p is already a partition spec
model_named_sharding = jax.tree.map(lambda p: mesh_sharding(p), model_part_spec)
# get pspec for opt_state
def get_opt_spec(x):
if isinstance(x, dict):
return unfreeze(model_named_sharding)
# return an empty partspec
return mesh_sharding((PartitionSpec()))
# this function replaces the empty model params spec with the 'model_named_shard'
state_sharding = jax.tree.map(
get_opt_spec, state_sharding, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState))
)
jit_init_fn = jax.jit(
init_fn,
static_argnames=('model', 'optimizer'), # skip model and optimizer
in_shardings=mesh_sharding(PartitionSpec()), # we don't shard params explicitly
out_shardings=state_sharding # but returned initialized_state is sharded
)
initialized_state = jit_init_fn(params, model, adamw)
# %%
# train step
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
"""
The label smoothing implementation is adapted from Flax's official example:
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
"""
vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing_factor
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
)
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
logits = jnp.asarray(logits, dtype=jnp.float32)
logits = logits.astype(jnp.float32)
soft_labels = soft_labels.astype(jnp.float32)
loss = optax.softmax_cross_entropy(logits, soft_labels)
loss = loss - normalizing_constant
# ignore padded tokens from loss
loss = loss * padding_mask
loss = jax.lax.with_sharding_constraint(loss, x_sharding)
loss = loss.mean()
# num_labels = padding_mask.mean()
return loss # , num_labels
# %%
# def extract_spec(sharding_obj):
# # Check if the object is a NamedSharding instance
# if isinstance(sharding_obj, NamedSharding):
# return sharding_obj.spec # Return the spec if it is a NamedSharding
# return sharding_obj # Return the object itself if not
#
# state_sharding_spec = jax.tree.map(extract_spec, state_sharding)
# single device code annotated with jax.jit
# @partial(
# shard_map,
# mesh=mesh,
# in_specs=(state_sharding_spec,
# x_sharding.spec),
# out_specs=(state_sharding_spec, PartitionSpec()),
# check_rep=False,
# )
@functools.partial(
jax.jit,
# state is state_sharding initialized from init_fn
# x_sharding is data sharded explicitly later
in_shardings=(state_sharding, x_sharding),
out_shardings=(state_sharding, mesh_sharding(PartitionSpec())),
donate_argnames=('state'),
)
def train_step(state, batch):
label_smoothing_factor=0.0
# dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params, batch):
# check constraints
# frozen dict not allowed as sharding object
params = jax.lax.with_sharding_constraint(params, unfreeze(model_named_sharding))
batch = jax.lax.with_sharding_constraint(batch, x_sharding)
# require decoder_input_ids to simulate auto-regressive output during
# generation time
logits = state.apply_fn(
{'params': params},
input_ids=batch['input_ids'],
attention_mask=batch['attention_mask'],
decoder_input_ids=batch['decoder_input_ids'],
decoder_attention_mask=batch['decoder_attention_mask'],
)[0] # zero because output is some structure, where first is the logit
# use labels here
# loss, num_labels = loss_fn(
loss = loss_fn(
logits,
batch["labels"],
batch["decoder_attention_mask"],
label_smoothing_factor)
return loss # , num_labels
# compute gradients through computational graph
# allow values to pass through
grad_fn = jax.value_and_grad(compute_loss, has_aux=False)
(loss), grad = grad_fn(state.params, batch)
# num_labels = jax.lax.psum(num_labels, "batch")
# loss, grad = jax.lax.pmean((loss, grad), axis_name="data")
new_state = state.apply_gradients(grads=grad)
with jax.named_scope("sync_metrics"):
step_metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
return new_state, step_metrics
# # %%
# # explore data sharding
# sharded_batch = next(iter(train_loader))
# sharded_batch = jax.device_put(sharded_batch, x_sharding)
# jax.debug.visualize_array_sharding(sharded_batch['input_ids'])
# jax.debug.visualize_array_sharding(initialized_state.params['shared']['embedding'])
# # prep 1 step
# print("1 step for jit-ting")
# with mesh:
# state, metrics = train_step(initialized_state, sharded_batch)
# %%
# %%
# tr
print("***** Running training *****")
print(f" Num examples = {training_size}")
print(f" Num Epochs = {num_epochs}")
print(f" Instantaneous batch size per device = {per_device_train_batch_size}")
print(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
print(f" Total optimization steps = {total_train_steps}")
# %%
# jax.profiler.start_trace("./traces")
# jit_train_step = jax.jit(train_step)
print("*" * 50)
print("training start")
rng, input_rng = jax.random.split(rng)
train_time = 0
state = initialized_state
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
train_start = time.time()
# Create sampling rng
train_metrics = []
steps_per_epoch = training_size // train_batch_size
train_loader = dataprep.data_loader(rng, batch_size=train_batch_size, shuffle=True, drop_last=True)
# Generate an epoch by shuffling sampling indices from the train dataset
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
batch = next(train_loader)
batch = jax.device_put(batch, x_sharding)
with mesh:
state, train_metric = train_step(state, batch)
# train_metrics.append(train_metric)
# this is for more accurate time stats, but slows down training
# train_metric['loss'].block_until_ready()
train_time = time.time() - train_start
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | "
f"Loss: {train_metric['loss']}, "
f"Learning Rate:{train_metric['learning_rate']}, "
f"Last train time: {train_time})"
)
# jax.profiler.stop_trace()
# # %%
# # try out
# gather_state = jax.device_get(state)
# gather_batch = jax.device_get(batch)
# logits = gather_state.apply_fn(
# {'params': gather_state.params},
# input_ids=gather_batch['input_ids'],
# attention_mask=gather_batch['attention_mask'],
# decoder_input_ids=gather_batch['decoder_input_ids'],
# decoder_attention_mask=gather_batch['decoder_attention_mask'],
# )[0] # zero because output is some structure, where first is the logit
#
# probs = nn.softmax(logits, axis=-1)
# predicted = jnp.argmax(probs, axis=-1)
# print(predicted[0])
# %%
main_model = custom_model.from_pretrained('t5-base')
output_dir = save_path
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(state.params)
params = jax.tree.map(lambda x: x.astype(jnp.float32), params)
main_model.save_pretrained(output_dir, params=params)
# %%