551 lines
18 KiB
Python
551 lines
18 KiB
Python
# %%
|
|
import os
|
|
# Set this to True to run the model on CPU only.
|
|
USE_CPU_ONLY = False
|
|
|
|
flags = os.environ.get("XLA_FLAGS", "")
|
|
if USE_CPU_ONLY:
|
|
flags += " --xla_force_host_platform_device_count=4" # Simulate 8 devices
|
|
# Enforce CPU-only execution
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
os.environ["JAX_PLATFORMS"] = "cpu"
|
|
else:
|
|
# GPU flags
|
|
flags = (
|
|
'--xla_gpu_enable_triton_softmax_fusion=true '
|
|
'--xla_gpu_triton_gemm_any=True '
|
|
# '--xla_gpu_enable_async_collectives=true '
|
|
'--xla_gpu_enable_latency_hiding_scheduler=true '
|
|
'--xla_gpu_enable_highest_priority_async_stream=true '
|
|
)
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
|
|
os.environ["XLA_FLAGS"] = flags
|
|
os.environ.update({
|
|
"TOKENIZERS_PARALLELISM" : "false",
|
|
"CUDA_DEVICE_MAX_CONNECTIONS" : "1",
|
|
"NCCL_LL128_BUFFSIZE": "-2",
|
|
"NCCL_LL_BUFFSIZE": "-2",
|
|
"NCCL_PROTO": "SIMPLE,LL,LL128",
|
|
"XLA_PYTHON_CLIENT_MEM_FRACTION" : "0.5",
|
|
# "XLA_PYTHON_CLIENT_PREALLOCATE" : "false"
|
|
})
|
|
|
|
|
|
|
|
|
|
import functools
|
|
from functools import partial
|
|
from pprint import pprint
|
|
from typing import Any, Dict, Tuple, Callable, Sequence, Dict, Union
|
|
|
|
import flax.linen as nn
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
from jax.experimental.shard_map import shard_map
|
|
from jax.sharding import Mesh, NamedSharding
|
|
# from jax.experimental.pjit import pjit # superseded by jax.jit
|
|
from jax.experimental import mesh_utils
|
|
from jax.sharding import PartitionSpec
|
|
from ml_collections import ConfigDict
|
|
import optax
|
|
import logging
|
|
import time
|
|
from datasets import Dataset, load_from_disk
|
|
|
|
from flax import jax_utils, traverse_util
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
|
from flax.core.frozen_dict import freeze, unfreeze, FrozenDict
|
|
import flax.core
|
|
|
|
# model checkpointing and saving utilities
|
|
from flax import linen as nn
|
|
from flax.training import checkpoints, train_state
|
|
from flax import struct, serialization
|
|
|
|
from parallel.partitions import set_partitions
|
|
|
|
from tqdm import tqdm
|
|
|
|
from parallel.dataload import DataPrepare
|
|
|
|
# for memory tracking
|
|
# from jax_smi import initialise_tracking
|
|
# initialise_tracking()
|
|
|
|
|
|
PyTree = Any
|
|
Metrics = Dict[str, Tuple[jax.Array, ...]]
|
|
|
|
if USE_CPU_ONLY:
|
|
jax.config.update('jax_platform_name', 'cpu')
|
|
else:
|
|
jax.config.update("jax_default_matmul_precision", "bfloat16")
|
|
|
|
jax.config.update("jax_compilation_cache_dir", "/tmp/jax_cache")
|
|
jax.config.update("jax_persistent_cache_min_entry_size_bytes", -1)
|
|
jax.config.update("jax_persistent_cache_min_compile_time_secs", 0)
|
|
|
|
|
|
|
|
|
|
# %%
|
|
## get platform type
|
|
from jax.extend.backend import get_backend
|
|
print(get_backend().platform)
|
|
print(jax.devices())
|
|
|
|
# %%
|
|
# config options
|
|
file_path = '/home/richard/Projects/learn_t5/simple_model/combined_data_t5_retrieval/'
|
|
save_path = '/home/richard/Projects/06_research/jax_models/model_checkpoints/shmap/'
|
|
# file_path = 'combined_data'
|
|
split_datasets = load_from_disk(file_path)
|
|
training_size = len(split_datasets['train'])
|
|
# Store some constant
|
|
seed = 117
|
|
num_epochs = 40
|
|
batch_size = 32 # do not go beyond 128, 64 is good
|
|
num_train_epochs = num_epochs
|
|
per_device_train_batch_size = batch_size
|
|
train_batch_size = per_device_train_batch_size * jax.device_count()
|
|
per_device_eval_batch_size = batch_size
|
|
eval_batch_size = per_device_eval_batch_size * jax.device_count()
|
|
steps_per_epoch = training_size // train_batch_size
|
|
total_train_steps = steps_per_epoch * num_epochs
|
|
|
|
warmup_steps = 0
|
|
learning_rate = 2e-5
|
|
|
|
weight_decay = 0.01
|
|
adam_beta1 = 0.9
|
|
adam_beta2 = 0.999
|
|
adam_epsilon = 1e-8
|
|
label_smoothing_factor = 0.0
|
|
num_beams = 1
|
|
val_max_target_length = 128
|
|
predict_with_generate = True
|
|
|
|
|
|
# %%
|
|
# prepare data
|
|
# init object
|
|
# e.g. Config
|
|
print("preparing data")
|
|
data_config = ConfigDict(
|
|
dict(
|
|
max_length=128,
|
|
pad_token_id=0,
|
|
decoder_start_token_id=0
|
|
)
|
|
)
|
|
|
|
dataprep = DataPrepare(split_datasets['train'], data_config)
|
|
# # example usage
|
|
# # %%
|
|
seed = 117
|
|
rng = jax.random.PRNGKey(seed)
|
|
train_loader = dataprep.data_loader(rng, batch_size=batch_size)
|
|
batch = next(iter(train_loader))
|
|
|
|
# %%
|
|
# from t5_model.configuration_t5 import FrozenT5Config as T5ConfigCustom
|
|
from t5_model.modeling_t5_flax import FlaxT5ForConditionalGeneration as custom_model
|
|
main_model = custom_model.from_pretrained(
|
|
"t5-base",
|
|
dtype=jnp.bfloat16,
|
|
gradient_checkpointing=True,
|
|
)
|
|
params = main_model.params
|
|
# pretrained_params = model.params
|
|
model = main_model.module
|
|
|
|
# %%
|
|
# # testing config hashability
|
|
# # some explanation:
|
|
# # The PreTrainedModel class loads a T5Config model that is not hashable because
|
|
# # it is a complicated class that pretends to be a dataclass.
|
|
# # The solution is to extract a dict from it, then make a ConfigDict from
|
|
# # ml_collections library so that we can get values via the "." operator.
|
|
# # also, we can switch between FrozenConfigDict and ConfigDict, allowing us to
|
|
# # modify the config before passing to the next layer
|
|
# from transformers import T5Config
|
|
# from t5_model.configuration_t5 import FrozenT5Config
|
|
# from ml_collections import ConfigDict, FrozenConfigDict
|
|
#
|
|
# config = T5Config.from_pretrained("t5-base").to_dict()
|
|
# config.pop('architectures')
|
|
# config.pop('id2label')
|
|
# # test if it works
|
|
# frozen_config = FrozenConfigDict(config)
|
|
# # test hash
|
|
# hash(frozen_config)
|
|
|
|
# %%
|
|
# # print model
|
|
# rng, input_rng = jax.random.split(rng)
|
|
# model.tabulate(
|
|
# input_rng,
|
|
# input_ids=batch['input_ids'],
|
|
# attention_mask=batch['attention_mask'],
|
|
# decoder_input_ids=batch['decoder_input_ids'],
|
|
# decoder_attention_mask=batch['decoder_attention_mask'],
|
|
# console_kwargs={"force_jupyter": True}
|
|
# )
|
|
|
|
|
|
|
|
# %%
|
|
# create mesh
|
|
print("creating mesh")
|
|
device_mesh = mesh_utils.create_device_mesh((2,2))
|
|
print(device_mesh)
|
|
|
|
mesh = Mesh(devices=device_mesh, axis_names=('data', 'model'))
|
|
print(mesh)
|
|
|
|
def mesh_sharding(pspec: PartitionSpec) -> NamedSharding:
|
|
if USE_CPU_ONLY:
|
|
return NamedSharding(mesh, pspec, memory_kind="unpinned_host")
|
|
else:
|
|
# if gpu
|
|
return NamedSharding(mesh, pspec, memory_kind="device")
|
|
|
|
x_sharding = mesh_sharding(PartitionSpec('data', None)) # replicate across data axis
|
|
model_sharding=mesh_sharding(PartitionSpec(None, 'model'))
|
|
|
|
|
|
# %%
|
|
# optimizers
|
|
|
|
def create_learning_rate_fn(
|
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
|
) -> Callable[[int], jnp.ndarray]:
|
|
"""Returns a linear warmup, linear_decay learning rate function."""
|
|
steps_per_epoch = train_ds_size // train_batch_size
|
|
num_train_steps = steps_per_epoch * num_train_epochs
|
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
|
decay_fn = optax.linear_schedule(
|
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
|
)
|
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
|
return schedule_fn
|
|
|
|
|
|
# Create learning rate schedule
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
|
training_size,
|
|
train_batch_size,
|
|
num_train_epochs,
|
|
warmup_steps,
|
|
learning_rate,
|
|
)
|
|
|
|
# We use Optax's "masking" functionality to not apply weight decay
|
|
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
|
|
# mask boolean with the same structure as the parameters.
|
|
# The mask is True for parameters that should be decayed.
|
|
def decay_mask_fn(params):
|
|
flat_params = traverse_util.flatten_dict(params)
|
|
# find out all LayerNorm parameters
|
|
layer_norm_candidates = ["final_layer_norm", "layer_norm"]
|
|
layer_norm_named_params = {
|
|
layer[-2:]
|
|
for layer_norm_name in layer_norm_candidates
|
|
for layer in flat_params.keys()
|
|
if layer_norm_name in "".join(layer).lower()
|
|
}
|
|
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
|
|
return traverse_util.unflatten_dict(flat_mask)
|
|
|
|
# create adam optimizer
|
|
adamw = optax.adamw(
|
|
learning_rate=linear_decay_lr_schedule_fn,
|
|
b1=adam_beta1,
|
|
b2=adam_beta2,
|
|
eps=adam_epsilon,
|
|
weight_decay=weight_decay,
|
|
mask=decay_mask_fn,
|
|
)
|
|
|
|
# %%
|
|
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
|
|
"""
|
|
The label smoothing implementation is adapted from Flax's official example:
|
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
|
"""
|
|
vocab_size = logits.shape[-1]
|
|
confidence = 1.0 - label_smoothing_factor
|
|
low_confidence = (1.0 - confidence) / (vocab_size - 1)
|
|
normalizing_constant = -(
|
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
|
|
)
|
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
|
|
logits = jnp.asarray(logits, dtype=jnp.float32)
|
|
logits = logits.astype(jnp.float32)
|
|
soft_labels = soft_labels.astype(jnp.float32)
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
|
loss = loss - normalizing_constant
|
|
|
|
# ignore padded tokens from loss
|
|
loss = loss * padding_mask
|
|
mean_loss = loss.mean()
|
|
# num_labels = padding_mask.mean()
|
|
return mean_loss # , num_labels
|
|
|
|
|
|
# %%
|
|
################################################################
|
|
# old jit in_shardings method
|
|
|
|
# create init_fn to produce sharded state
|
|
def init_fn(params, model, optimizer):
|
|
# do be careful with the model init
|
|
# imported models might have complicated init methods
|
|
|
|
# mask = create_mask_for_layer_norm(params)
|
|
# override params with bfloat version
|
|
# params= cast_floating_to(params, jnp.bfloat16, mask)
|
|
|
|
state = train_state.TrainState.create( # Create a `TrainState`.
|
|
apply_fn=model.apply,
|
|
params=params,
|
|
tx=optimizer)
|
|
return state
|
|
|
|
|
|
abstract_variables = jax.eval_shape(
|
|
functools.partial(init_fn, model=model, optimizer=adamw), params)
|
|
|
|
# jax.sharding: describes how a jax.Array is laid out across devices
|
|
state_sharding = nn.get_sharding(abstract_variables, mesh)
|
|
|
|
from parallel.partitions import set_partitions
|
|
# set_partitions freezes the params on return
|
|
model_part_spec = set_partitions(unfreeze(params))
|
|
# p is already a partition spec
|
|
model_named_sharding = jax.tree.map(lambda p: mesh_sharding(p), model_part_spec)
|
|
|
|
# get pspec for opt_state
|
|
def get_opt_spec(x):
|
|
if isinstance(x, dict):
|
|
return unfreeze(model_named_sharding)
|
|
# return an empty partspec
|
|
return mesh_sharding((PartitionSpec()))
|
|
|
|
# this function replaces the empty model params spec with the 'model_named_shard'
|
|
state_sharding = jax.tree.map(
|
|
get_opt_spec, state_sharding, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState))
|
|
)
|
|
|
|
|
|
|
|
# %%
|
|
jit_init_fn = jax.jit(
|
|
init_fn,
|
|
static_argnames=('model', 'optimizer'), # skip model and optimizer
|
|
in_shardings=mesh_sharding(PartitionSpec()), # we don't shard params explicitly
|
|
out_shardings=state_sharding # but returned initialized_state is sharded
|
|
)
|
|
initialized_state = jit_init_fn(params, model, adamw)
|
|
|
|
# %%
|
|
# train step
|
|
def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
|
|
"""
|
|
The label smoothing implementation is adapted from Flax's official example:
|
|
https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
|
|
"""
|
|
vocab_size = logits.shape[-1]
|
|
confidence = 1.0 - label_smoothing_factor
|
|
low_confidence = (1.0 - confidence) / (vocab_size - 1)
|
|
normalizing_constant = -(
|
|
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
|
|
)
|
|
soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
|
|
logits = jnp.asarray(logits, dtype=jnp.float32)
|
|
logits = logits.astype(jnp.float32)
|
|
soft_labels = soft_labels.astype(jnp.float32)
|
|
loss = optax.softmax_cross_entropy(logits, soft_labels)
|
|
loss = loss - normalizing_constant
|
|
|
|
# ignore padded tokens from loss
|
|
loss = loss * padding_mask
|
|
loss = loss.mean()
|
|
# num_labels = padding_mask.mean()
|
|
return loss # , num_labels
|
|
|
|
# %%
|
|
|
|
# single device code annotated with jax.jit
|
|
@functools.partial(
|
|
jax.jit,
|
|
# state is state_sharding initialized from init_fn
|
|
# x_sharding is data sharded explicitly later
|
|
in_shardings=(state_sharding, x_sharding),
|
|
out_shardings=(state_sharding, mesh_sharding(PartitionSpec())),
|
|
donate_argnames=('state'),
|
|
)
|
|
def train_step(state, batch):
|
|
|
|
label_smoothing_factor=0.0
|
|
# dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
|
# computes loss per shard
|
|
def compute_loss(params, batch):
|
|
# check constraints
|
|
# frozen dict not allowed as sharding object
|
|
params = jax.lax.with_sharding_constraint(params, unfreeze(model_named_sharding))
|
|
batch = jax.lax.with_sharding_constraint(batch, x_sharding)
|
|
logits = state.apply_fn(
|
|
{'params': params},
|
|
input_ids=batch['input_ids'],
|
|
attention_mask=batch['attention_mask'],
|
|
decoder_input_ids=batch['decoder_input_ids'],
|
|
decoder_attention_mask=batch['decoder_attention_mask'],
|
|
)[0] # zero because output is some structure, where first is the logit
|
|
|
|
# logits sharding
|
|
# data, None, model
|
|
#
|
|
print("logits")
|
|
jax.debug.inspect_array_sharding(logits, callback=print)
|
|
# use labels here
|
|
# loss, num_labels = loss_fn(
|
|
loss = loss_fn(
|
|
logits,
|
|
batch["labels"],
|
|
batch["decoder_attention_mask"],
|
|
label_smoothing_factor)
|
|
# loss sharding
|
|
# it gives PartitionSpec(), which implies a reduction already happened
|
|
print("loss")
|
|
jax.debug.inspect_array_sharding(loss, callback=print)
|
|
|
|
return loss # , num_labels
|
|
|
|
# compute gradients through computational graph
|
|
# allow values to pass through
|
|
grad_fn = jax.value_and_grad(compute_loss, has_aux=False)
|
|
batch = jax.tree.map(lambda x: jax.lax.with_sharding_constraint(x, x_sharding), batch)
|
|
(loss), grads = grad_fn(state.params, batch)
|
|
# num_labels = jax.lax.psum(num_labels, "batch")
|
|
|
|
# so far we have been operating from within each shard
|
|
# we need to sync gradients across devices
|
|
# we bring all gradients together onto a single device
|
|
# jax.debug.inspect_array_sharding(grads, callback=print)
|
|
grads = jax.lax.with_sharding_constraint(grads, mesh_sharding(PartitionSpec()))
|
|
# grads = jax.lax.with_sharding_constraint(grads, state_sharding)
|
|
# jax.debug.visualize_array_sharding(grad)
|
|
# jax.debug.inspect_array_sharding(grad, callback=print)
|
|
# check the output grad tree from mean
|
|
# print(jax.tree.map(jnp.shape, grad))
|
|
|
|
|
|
|
|
new_state = state.apply_gradients(grads=grads)
|
|
with jax.named_scope("sync_metrics"):
|
|
step_metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
|
|
|
return new_state, step_metrics
|
|
|
|
# %%
|
|
# explore data sharding
|
|
sharded_batch = next(iter(train_loader))
|
|
# sharded_batch = jax.device_put(sharded_batch, x_sharding)
|
|
sharded_batch = jax.tree.map(lambda x: jax.lax.with_sharding_constraint(x, x_sharding), batch)
|
|
jax.debug.visualize_array_sharding(sharded_batch['input_ids'])
|
|
# jax.debug.visualize_array_sharding(initialized_state.params['shared']['embedding'])
|
|
|
|
|
|
|
|
# %%
|
|
# # prep 1 step
|
|
print("1 step for jit-ting")
|
|
with mesh:
|
|
state, metrics = train_step(initialized_state, sharded_batch)
|
|
|
|
# %%
|
|
|
|
# %%
|
|
# tr
|
|
print("***** Running training *****")
|
|
print(f" Num examples = {training_size}")
|
|
print(f" Num Epochs = {num_epochs}")
|
|
print(f" Instantaneous batch size per device = {per_device_train_batch_size}")
|
|
print(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
|
print(f" Total optimization steps = {total_train_steps}")
|
|
|
|
|
|
# %%
|
|
# jax.profiler.start_trace("./traces")
|
|
|
|
|
|
print("*" * 20)
|
|
print("training start")
|
|
rng, input_rng = jax.random.split(rng)
|
|
train_time = 0
|
|
state = initialized_state
|
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
|
for epoch in epochs:
|
|
train_start = time.time()
|
|
|
|
# Create sampling rng
|
|
train_metrics = []
|
|
steps_per_epoch = training_size // train_batch_size
|
|
train_loader = dataprep.data_loader(rng, batch_size=batch_size, shuffle=True, drop_last=True)
|
|
# Generate an epoch by shuffling sampling indices from the train dataset
|
|
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
|
|
batch = next(train_loader)
|
|
batch = jax.device_put(batch, x_sharding)
|
|
with mesh:
|
|
state, train_metric = train_step(state, batch)
|
|
|
|
# train_metrics.append(train_metric)
|
|
|
|
|
|
# this is for more accurate time stats, but slows down training
|
|
# train_metric['loss'].block_until_ready()
|
|
train_time = time.time() - train_start
|
|
|
|
|
|
|
|
epochs.write(
|
|
f"Epoch... ({epoch + 1}/{num_epochs} | "
|
|
f"Loss: {train_metric['loss']}, "
|
|
f"Learning Rate:{train_metric['learning_rate']}, "
|
|
f"Last train time: {train_time})"
|
|
)
|
|
# jax.profiler.stop_trace()
|
|
|
|
# %%
|
|
# try out
|
|
# gather_state = jax.device_get(state)
|
|
# gather_batch = jax.device_get(batch)
|
|
# logits = gather_state.apply_fn(
|
|
# {'params': gather_state.params},
|
|
# input_ids=gather_batch['input_ids'],
|
|
# attention_mask=gather_batch['attention_mask'],
|
|
# decoder_input_ids=gather_batch['decoder_input_ids'],
|
|
# decoder_attention_mask=gather_batch['decoder_attention_mask'],
|
|
# )[0] # zero because output is some structure, where first is the logit
|
|
#
|
|
# probs = nn.softmax(logits, axis=-1)
|
|
# predicted = jnp.argmax(probs, axis=-1)
|
|
# print(predicted[0])
|
|
|
|
# %%
|
|
main_model = custom_model.from_pretrained('t5-base')
|
|
output_dir = save_path
|
|
|
|
# save checkpoint after each epoch and push checkpoint to the hub
|
|
if jax.process_index() == 0:
|
|
params = jax.device_get(state.params)
|
|
params = jax.tree.map(lambda x: x.astype(jnp.float32), params)
|
|
main_model.save_pretrained(output_dir, params=params)
|
|
|
|
|
|
# %%
|