# %% # Prepare dataloader for jax training from datasets import Dataset, DatasetDict, Value, Sequence, load_from_disk from transformers import FlaxT5ForConditionalGeneration from datasets import ClassLabel, Value, Sequence from ml_collections import ConfigDict import numpy as np import jax.numpy as jnp import jax import math from typing import Optional, List, Tuple, Callable, cast file_path = '/home/richard/Projects/learn_t5/simple_model/combined_data_t5_retrieval' # file_path = 'combined_data' # split_datasets = load_from_disk(file_path) # training_size = len(split_datasets['train']) from transformers import T5TokenizerFast tokenizer = T5TokenizerFast.from_pretrained("t5-base", return_tensors="np", clean_up_tokenization_spaces=True) # Define additional special tokens additional_special_tokens = ["", "", "", "", "", "", "SIG", "UNIT", "DATA_TYPE"] # Add the additional special tokens to the tokenizer tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) model = FlaxT5ForConditionalGeneration.from_pretrained("t5-base") model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"]) shift_tokens_right_fn = getattr(model_module, "shift_tokens_right") # noqa: B009 # class takes in a dataset class DataPrepare(): def __init__(self, raw_dataset, config): self.raw_dataset: Dataset = raw_dataset self.train_dataset: Optional[Dataset] = None self.size: int = len(raw_dataset) self.config: ConfigDict = config self.make_dataset() # In Flax, for seq2seq models we need to pass `decoder_input_ids` # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here # for that dynamically import the `shift_tokens_right` function from the model file # given a dataset entry, run it through the tokenizer # Setting padding="max_length" as we need fixed length inputs for jitted functions def preprocess_function(self, example: Dataset): inputs = example['input'] targets = example['output'] # text_target sets the corresponding label to inputs # there is no need to create a separate 'labels' # produce input_ids and decoder_input_ids model_inputs = tokenizer( inputs, max_length=self.config.max_length, padding="max_length", truncation=True, return_tensors="np" ) labels = tokenizer( text_target=targets, max_length=self.config.max_length, padding="max_length", truncation=True, return_tensors="np" ) # for loss computation model_inputs["labels"] = labels["input_ids"] # make decoder input ids decoder_input_ids = shift_tokens_right_fn( labels["input_ids"], self.config.pad_token_id, self.config.decoder_start_token_id ) # require by model model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) # We need decoder_attention_mask so we can ignore pad tokens from loss model_inputs["decoder_attention_mask"] = labels["attention_mask"] return model_inputs def make_dataset(self): train_dataset = self.raw_dataset.map( self.preprocess_function, batched=True, num_proc=1, # if we do not remove, we keep the original data remove_columns=self.raw_dataset.column_names,) # set to numpy train_dataset.set_format( type='numpy', columns=[ 'input_ids', 'attention_mask', 'labels', 'decoder_input_ids', 'decoder_attention_mask'] ) # check that data fits # for name in ['input_ids', 'attention_mask', 'labels', 'decoder_input_ids', 'decoder_attention_mask']: # int_array: np.array = train_dataset[name] # if np.all((int_array >= 0) & (int_array <= 65535)): # continue # else: # raise ValueError("Values are out of range for uint16") # change to compact datatypes # features = train_dataset.features.copy() # features['input_ids'] = Sequence(Value('uint16')) # features['attention_mask'] = Sequence(Value('uint16')) # features['labels'] = Sequence(Value('uint16')) # features['decoder_input_ids'] = Sequence(Value('uint16')) # features['decoder_attention_mask'] = Sequence(Value('uint16')) # train_dataset = train_dataset.cast(features) # assign the dataset to train_dataset self.train_dataset = train_dataset def data_loader(self, rng: jax.random.PRNGKey, batch_size: int, shuffle: bool = False, drop_last=True): """ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. """ assert(self.train_dataset is not None) dataset: Dataset = cast(Dataset, self.train_dataset) if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) if drop_last: steps_per_epoch = len(dataset) // batch_size batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) else: steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: v for k, v in batch.items()} yield batch # testing out the class # %% # init object # e.g. Config # data_config = ConfigDict( # dict( # max_length=86, # pad_token_id=0, # decoder_start_token_id=0 # ) # ) # # from datasets import load_from_disk # split_datasets = load_from_disk(file_path) # dataprep = DataPrepare(split_datasets['train'], data_config) # # # %% # seed = 117 # rng = jax.random.PRNGKey(seed) # train_loader = dataprep.data_loader(rng, batch_size=32) # # # # # %% # batch = next(iter(train_loader)) # batch['input_ids'].shape # # %%