#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The Google Research Authors and The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for constructing PyTrees of PartitionSpecs.""" # utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.sharding import PartitionSpec as P # Sentinels _unmatched = object() # For specifying empty leaf dict `{}` empty_dict = object() def _match(qs, ks): """Return True if regexes in qs match any window of strings in tuple ks.""" # compile regexes and force complete match qts = tuple((re.compile(x + "$") for x in qs)) for i in range(len(ks) - len(qs) + 1): matches = [x.match(y) for x, y in zip(qts, ks[i:])] if matches and all(matches): return True return False def _replacement_rules(rules): def replace(key, val): for rule, replacement in rules: if _match(rule, key): return replacement return val return replace # PartitionSpec for GPTNeo # replicate the hidden dim and shard feed-forward and head dim # def _get_partition_rules(): # return [ # # embeddings # (("transformer", "wpe", "embedding"), P("mp", None)), # (("transformer", "wte", "embedding"), P("mp", None)), # # atention # (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")), # (("attention", "out_proj", "kernel"), P("mp", None)), # (("attention", "out_proj", "bias"), None), # # mlp # (("mlp", "c_fc", "kernel"), P(None, "mp")), # (("mlp", "c_fc", "bias"), P("mp")), # (("mlp", "c_proj", "kernel"), P("mp", None)), # (("mlp", "c_proj", "bias"), None), # # layer norms # ((r"ln_\d+", "bias"), None), # ((r"\d+", r"ln_\d+", "scale"), None), # (("ln_f", "bias"), None), # (("ln_f", "scale"), None), # ] def _get_partition_rules(): return [ # embedding (("shared", "embedding"), P("model", None)), # SelfAttention (("SelfAttention", "(q|k|v)", "kernel"), P(None, "model")), (("SelfAttention", "o", "kernel"), P("model", None)), (("SelfAttention", "relative_attention_bias", "embedding"), P(None)), # EncDecAttention (("EncDecAttention", "(q|k|v)", "kernel"), P(None, "model")), (("EncDecAttention", "o", "kernel"), P("model", None)), # DenseReluDense (("DenseReluDense", "wi", "kernel"), P(None, "model")), (("DenseReluDense", "wo", "kernel"), P("model", None)), # layer norms (("final_layer_norm", "weight"), P(None)), (("layer_norm", "weight"), P(None)), ] def set_partitions(in_dict): rules = _get_partition_rules() replace = _replacement_rules(rules) initd = {k: _unmatched for k in flatten_dict(in_dict)} result = {k: replace(k, v) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." # for item in result.values(): # if item: # print(item) return freeze(unflatten_dict(result))