learn_jax/parallel/partitions.py

108 lines
3.7 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The Google Research Authors and The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for constructing PyTrees of PartitionSpecs."""
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.sharding import PartitionSpec as P
# Sentinels
_unmatched = object()
# For specifying empty leaf dict `{}`
empty_dict = object()
def _match(qs, ks):
"""Return True if regexes in qs match any window of strings in tuple ks."""
# compile regexes and force complete match
qts = tuple((re.compile(x + "$") for x in qs))
for i in range(len(ks) - len(qs) + 1):
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
if matches and all(matches):
return True
return False
def _replacement_rules(rules):
def replace(key, val):
for rule, replacement in rules:
if _match(rule, key):
return replacement
return val
return replace
# PartitionSpec for GPTNeo
# replicate the hidden dim and shard feed-forward and head dim
# def _get_partition_rules():
# return [
# # embeddings
# (("transformer", "wpe", "embedding"), P("mp", None)),
# (("transformer", "wte", "embedding"), P("mp", None)),
# # atention
# (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
# (("attention", "out_proj", "kernel"), P("mp", None)),
# (("attention", "out_proj", "bias"), None),
# # mlp
# (("mlp", "c_fc", "kernel"), P(None, "mp")),
# (("mlp", "c_fc", "bias"), P("mp")),
# (("mlp", "c_proj", "kernel"), P("mp", None)),
# (("mlp", "c_proj", "bias"), None),
# # layer norms
# ((r"ln_\d+", "bias"), None),
# ((r"\d+", r"ln_\d+", "scale"), None),
# (("ln_f", "bias"), None),
# (("ln_f", "scale"), None),
# ]
def _get_partition_rules():
return [
# embedding
(("shared", "embedding"), P("model", None)),
# SelfAttention
(("SelfAttention", "(q|k|v)", "kernel"), P(None, "model")),
(("SelfAttention", "o", "kernel"), P("model", None)),
(("SelfAttention", "relative_attention_bias", "embedding"), P(None)),
# EncDecAttention
(("EncDecAttention", "(q|k|v)", "kernel"), P(None, "model")),
(("EncDecAttention", "o", "kernel"), P("model", None)),
# DenseReluDense
(("DenseReluDense", "wi", "kernel"), P(None, "model")),
(("DenseReluDense", "wo", "kernel"), P("model", None)),
# layer norms
(("final_layer_norm", "weight"), P(None)),
(("layer_norm", "weight"), P(None)),
]
def set_partitions(in_dict):
rules = _get_partition_rules()
replace = _replacement_rules(rules)
initd = {k: _unmatched for k in flatten_dict(in_dict)}
result = {k: replace(k, v) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
# for item in result.values():
# if item:
# print(item)
return freeze(unflatten_dict(result))