hipom_data_mapping/post_process/selection_with_pattern/run_diagnostic.py

408 lines
14 KiB
Python

# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from utils import BertEmbedder, cosine_similarity_chunked
from fuzzywuzzy import fuzz
##################
# global parameters
DIAGNOSTIC = True
THRESHOLD = 0.90
FUZZY_SIM_THRESHOLD=90
checkpoint_directory = "../../train/classification_bert"
###################
# %%
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
def __init__(self, input_df):
self.input_df = input_df
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"{row['tag_description']}"
element = f"{desc}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=64)
return embedder.embeddings.to('cpu')
# the purpose of this function is to group the strings that are similar to each other
# we need to form related groups of inputs
def group_similar_strings(obj_list, threshold=80):
groups = []
processed_strings = set() # To keep track of already grouped strings
for obj in obj_list:
# tuple is (idx, string)
if obj in processed_strings:
continue
# Find all strings similar to the current string above the threshold
similar_strings = [s for s in obj_list if s[1] != obj[1] and fuzz.ratio(obj[1], s[1]) >= threshold]
# Add the original string to the similar group
similar_group = [obj] + similar_strings
# Mark all similar strings as processed
processed_strings.update(similar_group)
# Add the group to the list of groups
groups.append(similar_group)
return groups
# this function takes in groups of related terms and create candidate entries
def make_candidates(groups):
candidates = []
for group in groups:
first_tuple = group[0]
# string_of_tuple = first_tuple[1]
id_of_tuple = first_tuple[0]
candidates.append(id_of_tuple)
return candidates
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list - aka it returns a local idx
def selection(cos_sim_matrix, source_mask, target_mask, file_object=None):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
if DIAGNOSTIC and (file_object is not None):
print('all scores:', file=file_object)
print(y_scores, file=file_object)
return max_idx, max_score
####################
# global level
# %%
# obtain the full mdm_list
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
#####################
# fold level
def run_selection(fold):
file_object = open(f'exports/output_{fold}.txt', 'w')
# set the fold
# import test data
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# generate your embeddings
# checkpoint_directory defined at global level
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
# we can generate the train embeddings once and re-use for every ship
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
global_sim = np.zeros(len(df))
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
print(ships_list)
for ship_idx in ships_list:
# ship_idx = 1001 # choose an example ship
print(ship_idx, file=file_object) # print selected ship
ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
map_local_index_to_global_index = ship_df.index.to_numpy()
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
# generate new embeddings for each ship
test_embedder = Embedder(input_df=ship_df)
test_embeds = test_embedder.make_embedding(checkpoint_path)
# generate the cosine sim matrix
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
ship_answer_sim = np.ones(len(ship_df))
###########
# STEP 1
# we want to loop through the generated class labels and find which ones match
# our pattern list
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
# we assign only those that are False to our answer list
# right now the 2 arrays are basically equal
ship_answer_list[~pattern_match_mask] = False
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list, score_list):
# separate the global variable from function variable
answer_list = answer_list.copy()
score_list = score_list.copy()
sample_df = ship_df[ship_df['p_pattern'] == select_class]
# we need to set all idx of chosen entries as False in answer_list
selected_idx_list = sample_df.index.to_list()
answer_list[selected_idx_list] = False
# basic assumption check
# group related inputs by description similarity
string_list = sample_df['tag_description'].to_list()
index_list = sample_df.index.to_list()
obj_list = list(zip(index_list, string_list))
# groups is a list of list, where each list is composed of a
# (idx, string) tuple
groups = group_similar_strings(obj_list, threshold=FUZZY_SIM_THRESHOLD)
if DIAGNOSTIC:
print('*' * 10, file=file_object)
print(select_class, file=file_object)
print('candidate groups', file=file_object)
print(groups, file=file_object)
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates = make_candidates(groups)
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
test_candidates_mask[test_candidates] = True
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
# perform selection
# it returns the group index that is most likely
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask, file_object)
# consolidate all idx's in the same group
chosen_group = groups[max_idx]
chosen_idx_list = [tuple[0] for tuple in chosen_group]
if DIAGNOSTIC:
print('chosen group', file=file_object)
print(chosen_group, file=file_object)
# before doing this, we have to use the max_score and evaluate if its close enough
if max_score > THRESHOLD:
answer_list[chosen_idx_list] = True
if DIAGNOSTIC:
print('max score', file=file_object)
print(max_score, file=file_object)
print('accepted', file=file_object)
else:
if DIAGNOSTIC:
print('max score', file=file_object)
print(max_score, file=file_object)
print('rejected', file=file_object)
# for analysis
test_candidates_mask = np.ones(len(ship_df), dtype=bool)
_, every_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask, None)
# write the score for every idx of this class
score_list[selected_idx_list] = every_score
return answer_list, score_list
# we choose one mdm class
for select_class in ship_predicted_classes:
ship_answer_list, ship_answer_sim = selection_for_class(select_class, cos_sim_matrix, ship_answer_list, ship_answer_sim)
# we want to write back to global_answer
# first we convert local indices to global indices
local_indices = np.where(ship_answer_list)[0]
global_indices = map_local_index_to_global_index[local_indices]
global_answer[global_indices] = True
# similarity score
global_sim[map_local_index_to_global_index] = ship_answer_sim
if DIAGNOSTIC:
# evaluation at per-ship level
y_true = ship_df['MDM'].to_list()
y_pred = ship_answer_list
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
# Print the results
print(f'Accuracy: {accuracy:.5f}', file=file_object)
print(f'F1 Score: {f1:.5f}', file=file_object)
print(f'Precision: {precision:.5f}', file=file_object)
print(f'Recall: {recall:.5f}', file=file_object)
y_true = df['MDM'].to_list()
y_pred = global_answer
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
file_object.close()
return global_answer, global_sim
# %%
for fold in [1]:
print(f'Perform selection for fold {fold}')
global_answer, global_sim = run_selection(fold)
# %%
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
df['score'] = global_sim
# %%
# %%
def print_summary(similarity_scores):
# Convert list to numpy array for additional stats
np_array = np.array(similarity_scores)
# Get stats
mean_value = np.mean(np_array)
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
# Display numpy results
print("Mean:", mean_value)
print("25th, 50th, 75th Percentiles:", percentiles)
# %%
# analysis of non-mdm in predicted
df_selected = df[global_answer]
df_selected[~df_selected['MDM']]
in_scores = df_selected[df_selected['MDM']]['score'].to_numpy()
print_summary(in_scores)
# %%
# analysis of mdm in non-predicted
df_selected = df[~global_answer]
# df_selected
df_selected[df_selected['MDM']]
# %%
out_scores = df_selected[df_selected['MDM']]['score'].to_numpy()
print_summary(out_scores)
# %%
import matplotlib.pyplot as plt
# Sample data
list1 = in_scores
list2 = out_scores
# Plot histograms
bins = 20
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=False)
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=False)
# Labels and legend
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.legend(loc='upper right')
plt.title('Histograms of Three Lists')
# Show plot
plt.show()
# %%