hipom_data_mapping/train/mapping_pattern/mapping_prediction/inference.py

163 lines
5.8 KiB
Python

import torch
from torch.utils.data import DataLoader
from transformers import (
T5TokenizerFast,
AutoModelForSeq2SeqLM,
)
import os
from tqdm import tqdm
from datasets import Dataset
import numpy as np
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class Inference():
tokenizer: T5TokenizerFast
model: torch.nn.Module
dataloader: DataLoader
def __init__(self, checkpoint_path):
self._create_tokenizer()
self._load_model(checkpoint_path)
def _create_tokenizer(self):
# %%
# load tokenizer
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
# Define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
# Add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
def _load_model(self, checkpoint_path: str):
# load model
# Define the directory and the pattern
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
model = torch.compile(model)
# set model to eval
self.model = model.eval()
def prepare_dataloader(self, input_df, batch_size, max_length):
"""
*arguments*
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
- batch_size: the batch size of dataloader output
- max_length: length of tokenizer output
"""
print("preparing dataloader")
# convert each dataframe row into a dictionary
# outputs a list of dictionaries
def _process_df(df):
output_list = [{
'input': f"<DESC>{row['tag_description']}<DESC>",
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
} for _, row in df.iterrows()]
return output_list
def _preprocess_function(example):
input = example['input']
target = example['output']
# text_target sets the corresponding label to inputs
# there is no need to create a separate 'labels'
model_inputs = self.tokenizer(
input,
text_target=target,
max_length=max_length,
return_tensors="pt",
padding='max_length',
truncation=True,
)
return model_inputs
test_dataset = Dataset.from_list(_process_df(input_df))
# map maps function to each "row" in the dataset
# aka the data in the immediate nesting
datasets = test_dataset.map(
_preprocess_function,
batched=True,
num_proc=1,
remove_columns=test_dataset.column_names,
)
# datasets = _preprocess_function(test_dataset)
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
# create dataloader
self.dataloader = DataLoader(datasets, batch_size=batch_size)
def generate(self):
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
MAX_GENERATE_LENGTH = 128
pred_generations = []
pred_labels = []
print("start generation")
for batch in tqdm(self.dataloader):
# Inference in batches
input_ids = batch['input_ids']
attention_mask = batch['attention_mask']
# save labels too
pred_labels.extend(batch['labels'])
# Move to GPU if available
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
self.model.to(device)
# Perform inference
with torch.no_grad():
outputs = self.model.generate(input_ids,
attention_mask=attention_mask,
max_length=MAX_GENERATE_LENGTH)
# Decode the output and print the results
pred_generations.extend(outputs.to("cpu"))
# %%
# extract sequence and decode
def extract_seq(tokens, start_value, end_value):
if start_value not in tokens or end_value not in tokens:
return None # Or handle this case according to your requirements
start_id = np.where(tokens == start_value)[0][0]
end_id = np.where(tokens == end_value)[0][0]
return tokens[start_id+1:end_id]
def process_tensor_output(tokens):
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
p_thing = None
p_property = None
if (thing_seq is not None):
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
if (property_seq is not None):
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
return p_thing, p_property
# decode prediction labels
def decode_preds(tokens_list):
thing_prediction_list = []
property_prediction_list = []
for tokens in tokens_list:
p_thing, p_property = process_tensor_output(tokens)
thing_prediction_list.append(p_thing)
property_prediction_list.append(p_property)
return thing_prediction_list, property_prediction_list
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
return thing_prediction_list, property_prediction_list