hipom_data_mapping/post_process/selection_old/predict.py

97 lines
3.9 KiB
Python

# %%
import pandas as pd
import os
import glob
# directory for checkpoints
checkpoint_directory = '../../train/mapping_t5_complete_desc_unit_name'
def select(fold):
# import test data
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
##########################################
# Process the dataframe for selection
# we start to cull predictions from here
data_master_path = "../../data_import/exports/data_model_master_export.csv"
df_master = pd.read_csv(data_master_path, skipinitialspace=True)
data_mapping = df
# Generate patterns
data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True)
data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True)
data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern']
df_master['master_pattern'] = df_master['thing'] + " " + df_master['property']
# Create a set of unique patterns from master for fast lookup
master_patterns = set(df_master['master_pattern'])
# thing_patterns = set(df_master['thing'])
# Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field
data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns)
# check if prediction is in MDM
data_mapping['p_thing_pattern'] = data_mapping['p_thing'].str.replace(r'\d', '#', regex=True)
data_mapping['p_property_pattern'] = data_mapping['p_property'].str.replace(r'\d', '#', regex=True)
data_mapping['p_pattern'] = data_mapping['p_thing_pattern'] + " " + data_mapping['p_property_pattern']
data_mapping['p_MDM'] = data_mapping['p_pattern'].apply(lambda x: x in master_patterns)
df = data_mapping
# selection
###########################################
# we now have to perform selection
# we restrict to predictions of a class of a ship
# then perform similarity selection with in-distribution data
# the magic is in performing per-class selection, not global
# import importlib
import selection
# importlib.reload(selection)
selector = selection.Selector(input_df=df, reference_df=train_df, fold=fold)
##########################################
# run inference
# checkpoint
# Use glob to find matching paths
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
tp, tn, fp, fn = selector.run_selection(checkpoint_path=checkpoint_path)
# write output to file output.txt
with open("output.txt", "a") as f:
print(80 * '*', file=f)
print(f'Statistics for fold {fold}', file=f)
print(f"tp: {tp}", file=f)
print(f"tn: {tn}", file=f)
print(f"fp: {fp}", file=f)
print(f"fn: {fn}", file=f)
print(f"fold: {fold}", file=f)
print("accuracy: ", (tp+tn)/(tp+tn+fp+fn), file=f)
print("f1_score: ", (2*tp)/((2*tp) + fp + fn), file=f)
print("precision: ", (tp)/(tp+fp), file=f)
print("recall: ", (tp)/(tp+fn), file=f)
###########################################
# Execute for all folds
# reset file before writing to it
with open("output.txt", "w") as f:
print('', file=f)
for fold in [1,2,3,4,5]:
select(fold)
# %%