196 lines
6.2 KiB
Python
196 lines
6.2 KiB
Python
# %%
|
|
|
|
# from datasets import load_from_disk
|
|
import os
|
|
|
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
|
|
import torch
|
|
from transformers import (
|
|
T5TokenizerFast,
|
|
AutoModelForSeq2SeqLM,
|
|
DataCollatorForSeq2Seq,
|
|
Seq2SeqTrainer,
|
|
EarlyStoppingCallback,
|
|
Seq2SeqTrainingArguments
|
|
)
|
|
import evaluate
|
|
import numpy as np
|
|
import pandas as pd
|
|
# import matplotlib.pyplot as plt
|
|
from datasets import Dataset, DatasetDict
|
|
|
|
|
|
|
|
torch.set_float32_matmul_precision('high')
|
|
|
|
# outputs a list of dictionaries
|
|
def process_df_to_dict(df):
|
|
output_list = []
|
|
for _, row in df.iterrows():
|
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
element = {
|
|
'input' : f"{desc}",
|
|
'output': f"<THING_START>{row['thing_pattern']}<THING_END><PROPERTY_START>{row['property_pattern']}<PROPERTY_END>",
|
|
}
|
|
output_list.append(element)
|
|
|
|
return output_list
|
|
|
|
|
|
def create_split_dataset(fold):
|
|
# train
|
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
|
|
# valid
|
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
|
|
combined_data = DatasetDict({
|
|
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
})
|
|
return combined_data
|
|
|
|
|
|
# function to perform training for a given fold
|
|
def train(fold):
|
|
save_path = f'checkpoint_fold_{fold}'
|
|
split_datasets = create_split_dataset(fold)
|
|
|
|
# prepare tokenizer
|
|
|
|
model_checkpoint = "t5-small"
|
|
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
# Define additional special tokens
|
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
# Add the additional special tokens to the tokenizer
|
|
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
|
|
max_length = 120
|
|
|
|
# given a dataset entry, run it through the tokenizer
|
|
def preprocess_function(example):
|
|
input = example['input']
|
|
target = example['output']
|
|
# text_target sets the corresponding label to inputs
|
|
# there is no need to create a separate 'labels'
|
|
model_inputs = tokenizer(
|
|
input,
|
|
text_target=target,
|
|
max_length=max_length,
|
|
truncation=True,
|
|
padding=True
|
|
)
|
|
return model_inputs
|
|
|
|
# map maps function to each "row" in the dataset
|
|
# aka the data in the immediate nesting
|
|
tokenized_datasets = split_datasets.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=8,
|
|
remove_columns=split_datasets["train"].column_names,
|
|
)
|
|
|
|
# https://github.com/huggingface/transformers/pull/28414
|
|
# model_checkpoint = "google/t5-efficient-tiny"
|
|
# device_map set to auto to force it to load contiguous weights
|
|
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
|
# important! after extending tokens vocab
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
metric = evaluate.load("sacrebleu")
|
|
|
|
|
|
def compute_metrics(eval_preds):
|
|
preds, labels = eval_preds
|
|
# In case the model returns more than the prediction logits
|
|
if isinstance(preds, tuple):
|
|
preds = preds[0]
|
|
|
|
decoded_preds = tokenizer.batch_decode(preds,
|
|
skip_special_tokens=False)
|
|
|
|
# Replace -100s in the labels as we can't decode them
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
decoded_labels = tokenizer.batch_decode(labels,
|
|
skip_special_tokens=False)
|
|
|
|
# Remove <PAD> tokens from decoded predictions and labels
|
|
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
|
|
# Some simple post-processing
|
|
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
# print(decoded_preds, decoded_labels)
|
|
|
|
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
return {"bleu": result["score"]}
|
|
|
|
|
|
# Generation Config
|
|
# from transformers import GenerationConfig
|
|
gen_config = model.generation_config
|
|
gen_config.max_length = 64
|
|
|
|
# compile
|
|
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
|
|
|
|
# Trainer
|
|
|
|
args = Seq2SeqTrainingArguments(
|
|
f"{save_path}",
|
|
eval_strategy="epoch",
|
|
logging_dir="tensorboard-log",
|
|
logging_strategy="epoch",
|
|
save_strategy="epoch",
|
|
load_best_model_at_end=True,
|
|
learning_rate=1e-3,
|
|
per_device_train_batch_size=64,
|
|
per_device_eval_batch_size=64,
|
|
auto_find_batch_size=False,
|
|
ddp_find_unused_parameters=False,
|
|
weight_decay=0.01,
|
|
save_total_limit=1,
|
|
num_train_epochs=20,
|
|
predict_with_generate=True,
|
|
bf16=True,
|
|
push_to_hub=False,
|
|
generation_config=gen_config,
|
|
remove_unused_columns=False,
|
|
)
|
|
|
|
|
|
trainer = Seq2SeqTrainer(
|
|
model,
|
|
args,
|
|
train_dataset=tokenized_datasets["train"],
|
|
eval_dataset=tokenized_datasets["validation"],
|
|
data_collator=data_collator,
|
|
tokenizer=tokenizer,
|
|
compute_metrics=compute_metrics,
|
|
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
)
|
|
|
|
# uncomment to load training from checkpoint
|
|
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
|
|
trainer.train()
|
|
|
|
# execute training
|
|
for fold in [1,2,3,4,5]:
|
|
print(fold)
|
|
train(fold)
|
|
|