hipom_data_mapping/production/end_to_end/deduplication.py

434 lines
17 KiB
Python

# %%
import pandas as pd
import os
import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from tqdm import tqdm
import torch
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForSeq2SeqLM,
)
##################
# global parameters
##################
class BertEmbedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
self.model = model.to(self.device)
self.model = self.model.eval()
# self.model = torch.compile(self.model)
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# get last layer
embeddings = encoder_outputs.hidden_states[-1]
# get cls token embedding
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
all_embeddings.append(cls_embeddings)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
class T5Embedder:
def __init__(self, input_texts, model_checkpoint):
# we need to generate the embedding from list of input strings
self.embeddings = []
self.inputs = input_texts
model_checkpoint = model_checkpoint
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
# define additional special tokens
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
# add the additional special tokens to the tokenizer
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = "cpu"
model.to(self.device)
self.model = model.eval()
self.model = torch.compile(self.model)
def make_embedding(self, batch_size=128):
all_embeddings = self.embeddings
input_texts = self.inputs
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)
# Pass the input through the encoder and retrieve the embeddings
with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
with torch.no_grad():
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
embeddings = encoder_outputs.last_hidden_state
# Compute the mean pooling of the token embeddings
# mean_embedding = embeddings.mean(dim=1)
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
all_embeddings.append(mean_embedding)
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
all_embeddings = torch.cat(all_embeddings, dim=0)
self.embeddings = all_embeddings
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
device = 'cuda'
batch1_size = batch1.size(0)
batch2_size = batch2.size(0)
batch2.to(device)
# Prepare an empty tensor to store results
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
# Process batch1 in chunks
for i in range(0, batch1_size, chunk_size):
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
batch1_chunk.to(device)
# Expand batch1 chunk and entire batch2 for comparison
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
batch2_norms = batch2.norm(dim=1, keepdim=True)
# Compute cosine similarity for the chunk and store it in the final tensor
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
# Compute cosine similarity by matrix multiplication and normalizing
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
# Store the results in the appropriate part of the final tensor
cos_sim[i:i + chunk_size] = sim_chunk
return cos_sim
###################
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
batch_size: int
def __init__(self, input_df, batch_size):
self.input_df = input_df
self.batch_size = batch_size
def make_embedding(self, checkpoint_path):
def generate_input_list(df):
input_list = []
for _, row in df.iterrows():
desc = f"<DESC>{row['tag_description']}<DESC>"
unit = f"<UNIT>{row['unit']}<UNIT>"
# name = f"<NAME>{row['tag_name']}<NAME>"
element = f"{desc}{unit}"
input_list.append(element)
return input_list
# prepare reference embed
train_data = list(generate_input_list(self.input_df))
# Define the directory and the pattern
# embedder = T5Embedder(train_data, checkpoint_path)
embedder = BertEmbedder(train_data, checkpoint_path)
embedder.make_embedding(batch_size=self.batch_size)
return embedder.embeddings
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
# give it
# it returns the most likely source candidate index and score among the source
# candidate list
# we then map the local idx to the ship-level idx
def selection(cos_sim_matrix, source_mask, target_mask):
# subset_matrix = cos_sim_matrix[condition_source]
# except we are subsetting 2D matrix (row, column)
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
# we select top-k here
# Get the indices of the top-k maximum values along axis 1
top_k = 1
# returns a potential 2d matrix of which columns have the highest values
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
# this partial sorts and ensures we care only top_k are correctly sorted
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
# Get the values of the top 5 maximum scores
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
# Calculate the average of the top-k scores along axis 1
y_scores = np.mean(top_k_values, axis=1)
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
# convert boolean to indices
condition_indices = np.where(source_mask)[0]
max_idx = condition_indices[max_idx]
return max_idx, max_score
####################
# global level
# obtain the full mdm_list
#####################
# fold level
def run_deduplication(
test_df,
train_df,
batch_size=1024,
threshold=0.9,
diagnostic=False
):
# TODO: replace this with a list of values to import
# too wasteful to just import everything
data_path = '../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
# set the fold
# import test data
df = test_df
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = "train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
# generate your embeddings
checkpoint_path = 'models/bert_model'
# cache embeddings
file_path = "train_embeds.pt"
if os.path.exists(file_path):
# Load the tensor if the file exists
tensor = torch.load(file_path, weights_only=True)
print("Loaded tensor")
else:
# Create and save the tensor if the file doesn't exist
print('generate train embeddings')
train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
tensor = train_embedder.make_embedding(checkpoint_path)
torch.save(tensor, file_path)
print("Tensor saved to file.")
train_embeds = tensor
# if we can, we can cache the train embeddings and load directly
# we can generate the train embeddings once and re-use for every ship
# generate new embeddings for each ship
print('generate test embeddings')
test_embedder = Embedder(input_df=df, batch_size=batch_size)
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in tqdm(ships_list):
# ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
# map_local_index_to_global_index = ship_df.index.to_numpy()
# we want to subset the ship and only p_mdm values
ship_mask = df['ships_idx'] == ship_idx
map_local_index_to_global_index = np.where(ship_mask)[0]
ship_df = df[ship_mask].reset_index(drop=True)
# subset the test embeds
test_embeds = global_test_embeds[map_local_index_to_global_index]
# generate the cosine sim matrix for the ship level
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list to map answers back to the global answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1A: ensure that the predicted mapping labels are valid
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
pattern_match_mask = pattern_match_mask.astype(bool)
# anything not in the pattern_match_mask are hallucinations
# this has the same effect as setting any wrong generations as non-mdm
ship_answer_list[~pattern_match_mask] = False
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
# p_mdm_mask = ship_df['p_mdm']
# # assign false to any non p_mdm entries
# ship_answer_list[~p_mdm_mask] = False
# # modify pattern_match_mask to remove any non p_mdm values
# pattern_match_mask = pattern_match_mask & p_mdm_mask
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# create local copy of answer_list
ship_answer_list = answer_list.copy()
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
# selected_idx_list = sample_df.index.to_numpy()
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
# basic assumption check
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates_mask = ship_df['p_mapping'] == select_class
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = train_df['mapping'] == select_class
if sum(train_candidates_mask) == 0:
# it can be the case that the mdm-valid mapping class is not found in training data
# print("not found in training data", select_class)
ship_answer_list[selected_idx_list] = False
return ship_answer_list
# perform selection
# max_idx is the id
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# set the duplicate entries to False
ship_answer_list[selected_idx_list] = False
# then only set the one unique chosen value as True
if max_score > threshold:
ship_answer_list[max_idx] = True
return ship_answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
# this resulted in big improvement
if (sum(ship_df['p_mapping'] == select_class)) > 0:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
ship_local_indices = np.where(ship_answer_list)[0]
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
global_answer[ship_global_indices] = True
# we set all unselected values to None
df.loc[~global_answer, 'p_thing'] = None
df.loc[~global_answer, 'p_property'] = None
if diagnostic:
print(80 * '*')
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred)
precision = precision_score(y_true, y_pred)
recall = recall_score(y_true, y_pred)
# print the results
print(f'accuracy: {accuracy:.5f}')
print(f'f1 score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
return df