434 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
| 
 | |
| # %%
 | |
| import pandas as pd
 | |
| import os
 | |
| import glob
 | |
| from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
 | |
| import numpy as np
 | |
| from tqdm import tqdm
 | |
| 
 | |
| import torch
 | |
| from transformers import (
 | |
|     AutoTokenizer,
 | |
|     AutoModelForSequenceClassification,
 | |
|     AutoModelForSeq2SeqLM,
 | |
| )
 | |
| 
 | |
| ##################
 | |
| # global parameters
 | |
| ##################
 | |
| 
 | |
| 
 | |
| 
 | |
| class BertEmbedder:
 | |
|     def __init__(self, input_texts, model_checkpoint):
 | |
|         # we need to generate the embedding from list of input strings
 | |
|         self.embeddings = []
 | |
|         self.inputs = input_texts
 | |
|         model_checkpoint = model_checkpoint 
 | |
|         self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
 | |
| 
 | |
|         model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
 | |
|         self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | |
|         # device = "cpu"
 | |
|         self.model = model.to(self.device)
 | |
|         self.model = self.model.eval()
 | |
|         # self.model = torch.compile(self.model)
 | |
| 
 | |
| 
 | |
|     def make_embedding(self, batch_size=128):
 | |
|         all_embeddings = self.embeddings
 | |
|         input_texts = self.inputs
 | |
| 
 | |
|         for i in range(0, len(input_texts), batch_size):
 | |
|             batch_texts = input_texts[i:i+batch_size]
 | |
|             # Tokenize the input text
 | |
|             inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
 | |
|             input_ids = inputs.input_ids.to(self.device)
 | |
|             attention_mask = inputs.attention_mask.to(self.device)
 | |
| 
 | |
| 
 | |
|             # Pass the input through the encoder and retrieve the embeddings
 | |
|             with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
 | |
|                 with torch.no_grad():
 | |
|                     encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
 | |
|                     # get last layer
 | |
|                     embeddings = encoder_outputs.hidden_states[-1]
 | |
|                     # get cls token embedding
 | |
|                     cls_embeddings = embeddings[:, 0, :]  # Shape: (batch_size, hidden_size)
 | |
|                     all_embeddings.append(cls_embeddings)
 | |
|         
 | |
|         # remove the batch list and makes a single large tensor, dim=0 increases row-wise
 | |
|         all_embeddings = torch.cat(all_embeddings, dim=0)
 | |
| 
 | |
|         self.embeddings = all_embeddings
 | |
| 
 | |
| class T5Embedder:
 | |
|     def __init__(self, input_texts, model_checkpoint):
 | |
|         # we need to generate the embedding from list of input strings
 | |
|         self.embeddings = []
 | |
|         self.inputs = input_texts
 | |
|         model_checkpoint = model_checkpoint 
 | |
|         self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
 | |
|         # define additional special tokens
 | |
|         additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
 | |
|         # add the additional special tokens to the tokenizer
 | |
|         self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
 | |
| 
 | |
|         model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
 | |
|         self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 | |
|         # device = "cpu"
 | |
|         model.to(self.device)
 | |
|         self.model = model.eval()
 | |
|         self.model = torch.compile(self.model)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     def make_embedding(self, batch_size=128):
 | |
|         all_embeddings = self.embeddings
 | |
|         input_texts = self.inputs
 | |
| 
 | |
|         for i in range(0, len(input_texts), batch_size):
 | |
|             batch_texts = input_texts[i:i+batch_size]
 | |
|             # Tokenize the input text
 | |
|             inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
 | |
|             input_ids = inputs.input_ids.to(self.device)
 | |
|             attention_mask = inputs.attention_mask.to(self.device)
 | |
| 
 | |
| 
 | |
|             # Pass the input through the encoder and retrieve the embeddings
 | |
| 
 | |
|             with torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
 | |
|                 with torch.no_grad():
 | |
|                     encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
 | |
|                     embeddings = encoder_outputs.last_hidden_state
 | |
| 
 | |
|             # Compute the mean pooling of the token embeddings
 | |
|             # mean_embedding = embeddings.mean(dim=1)
 | |
|             mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
 | |
|             all_embeddings.append(mean_embedding)
 | |
|         
 | |
|         # remove the batch list and makes a single large tensor, dim=0 increases row-wise
 | |
|         all_embeddings = torch.cat(all_embeddings, dim=0)
 | |
| 
 | |
|         self.embeddings = all_embeddings
 | |
| 
 | |
| 
 | |
| def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
 | |
|     device = 'cuda'
 | |
|     batch1_size = batch1.size(0)
 | |
|     batch2_size = batch2.size(0)
 | |
|     batch2.to(device)
 | |
|     
 | |
|     # Prepare an empty tensor to store results
 | |
|     cos_sim = torch.empty(batch1_size, batch2_size, device=device)
 | |
| 
 | |
|     # Process batch1 in chunks
 | |
|     for i in range(0, batch1_size, chunk_size):
 | |
|         batch1_chunk = batch1[i:i + chunk_size]  # Get chunk of batch1
 | |
|         
 | |
|         batch1_chunk.to(device)
 | |
|         # Expand batch1 chunk and entire batch2 for comparison
 | |
|         # batch1_chunk_exp = batch1_chunk.unsqueeze(1)  # Shape: (chunk_size, 1, seq_len)
 | |
|         # batch2_exp = batch2.unsqueeze(0)  # Shape: (1, batch2_size, seq_len)
 | |
|         batch2_norms = batch2.norm(dim=1, keepdim=True)
 | |
| 
 | |
|         
 | |
|         # Compute cosine similarity for the chunk and store it in the final tensor
 | |
|         # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
 | |
| 
 | |
|         # Compute cosine similarity by matrix multiplication and normalizing
 | |
|         sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
 | |
|         
 | |
|         # Store the results in the appropriate part of the final tensor
 | |
|         cos_sim[i:i + chunk_size] = sim_chunk
 | |
|     
 | |
|     return cos_sim
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| ###################
 | |
| # helper functions
 | |
| class Embedder():
 | |
|     input_df: pd.DataFrame
 | |
|     fold: int
 | |
|     batch_size: int
 | |
| 
 | |
|     def __init__(self, input_df, batch_size):
 | |
|         self.input_df = input_df
 | |
|         self.batch_size = batch_size
 | |
| 
 | |
| 
 | |
|     def make_embedding(self, checkpoint_path):
 | |
| 
 | |
|         def generate_input_list(df):
 | |
|             input_list = []
 | |
|             for _, row in df.iterrows():
 | |
|                 desc = f"<DESC>{row['tag_description']}<DESC>"
 | |
|                 unit = f"<UNIT>{row['unit']}<UNIT>"
 | |
|                 # name = f"<NAME>{row['tag_name']}<NAME>"
 | |
|                 element = f"{desc}{unit}"
 | |
|                 input_list.append(element)
 | |
|             return input_list
 | |
| 
 | |
|         # prepare reference embed
 | |
|         train_data = list(generate_input_list(self.input_df))
 | |
|         # Define the directory and the pattern
 | |
|         # embedder = T5Embedder(train_data, checkpoint_path)
 | |
|         embedder = BertEmbedder(train_data, checkpoint_path)
 | |
|         embedder.make_embedding(batch_size=self.batch_size)
 | |
|         return embedder.embeddings
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| # the selection function takes in the full cos_sim_matrix then subsets the
 | |
| # matrix according to the test_candidates_mask and train_candidates_mask that we
 | |
| # give it
 | |
| # it returns the most likely source candidate index and score among the source
 | |
| # candidate list
 | |
| # we then map the local idx to the ship-level idx
 | |
| def selection(cos_sim_matrix, source_mask, target_mask):
 | |
|     # subset_matrix = cos_sim_matrix[condition_source]
 | |
|     # except we are subsetting 2D matrix (row, column)
 | |
|     subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
 | |
|     # we select top-k here
 | |
|     # Get the indices of the top-k maximum values along axis 1
 | |
|     top_k = 1
 | |
|     # returns a potential 2d matrix of which columns have the highest values
 | |
|     # top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:]  # Get indices of top k values
 | |
|     # this partial sorts and ensures we care only top_k are correctly sorted
 | |
|     top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
 | |
|     
 | |
|     # Get the values of the top 5 maximum scores
 | |
|     top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
 | |
|     
 | |
|     # Calculate the average of the top-k scores along axis 1
 | |
|     y_scores = np.mean(top_k_values, axis=1)
 | |
|     max_idx = np.argmax(y_scores)
 | |
|     max_score = y_scores[max_idx]
 | |
| 
 | |
|     # convert boolean to indices
 | |
|     condition_indices = np.where(source_mask)[0]
 | |
|     max_idx = condition_indices[max_idx]
 | |
|     
 | |
| 
 | |
|     return max_idx, max_score
 | |
| 
 | |
| 
 | |
| 
 | |
| ####################
 | |
| # global level
 | |
| # obtain the full mdm_list
 | |
| 
 | |
| #####################
 | |
| # fold level
 | |
| 
 | |
| def run_deduplication(
 | |
|     test_df,
 | |
|     train_df,
 | |
|     batch_size=1024,
 | |
|     threshold=0.9,
 | |
|     diagnostic=False
 | |
|     ):
 | |
| 
 | |
|     # TODO: replace this with a list of values to import
 | |
|     # too wasteful to just import everything
 | |
|     data_path = '../data_import/exports/data_mapping_mdm.csv'
 | |
|     full_df = pd.read_csv(data_path, skipinitialspace=True)
 | |
|     full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
 | |
|     full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
 | |
| 
 | |
|     # set the fold
 | |
|     # import test data
 | |
|     df = test_df
 | |
|     df['p_mapping'] = df['p_thing'] + " " + df['p_property']
 | |
| 
 | |
|     # get target data
 | |
|     data_path = "train_all.csv"
 | |
|     train_df = pd.read_csv(data_path, skipinitialspace=True)
 | |
|     train_df['mapping'] = train_df['thing'] + " " + train_df['property']
 | |
| 
 | |
|     # generate your embeddings
 | |
|     checkpoint_path = 'models/bert_model'
 | |
| 
 | |
|     # cache embeddings
 | |
|     file_path = "train_embeds.pt"
 | |
|     if os.path.exists(file_path):
 | |
|         # Load the tensor if the file exists
 | |
|         tensor = torch.load(file_path, weights_only=True)
 | |
|         print("Loaded tensor")
 | |
|     else:
 | |
|         # Create and save the tensor if the file doesn't exist
 | |
|         print('generate train embeddings')
 | |
|         train_embedder = Embedder(input_df=train_df, batch_size=batch_size)
 | |
|         tensor = train_embedder.make_embedding(checkpoint_path)
 | |
|         torch.save(tensor, file_path)
 | |
|         print("Tensor saved to file.")
 | |
|     
 | |
|     train_embeds = tensor
 | |
| 
 | |
| 
 | |
|     # if we can, we can cache the train embeddings and load directly
 | |
|     # we can generate the train embeddings once and re-use for every ship
 | |
| 
 | |
|     # generate new embeddings for each ship
 | |
|     print('generate test embeddings')
 | |
|     test_embedder = Embedder(input_df=df, batch_size=batch_size)
 | |
|     global_test_embeds = test_embedder.make_embedding(checkpoint_path)
 | |
| 
 | |
| 
 | |
|     # create global_answer array
 | |
|     # the purpose of this array is to track the classification state at the global
 | |
|     # level
 | |
|     global_answer = np.zeros(len(df), dtype=bool)
 | |
| 
 | |
|     #############################
 | |
|     # ship level
 | |
|     # we have to split into per-ship analysis
 | |
|     ships_list = sorted(list(set(df['ships_idx'])))
 | |
| 
 | |
|     for ship_idx in tqdm(ships_list):
 | |
|         # ship_df = df[df['ships_idx'] == ship_idx]
 | |
|         # required to map local ship_answer array to global_answer array
 | |
|         # map_local_index_to_global_index = ship_df.index.to_numpy()
 | |
| 
 | |
|         # we want to subset the ship and only p_mdm values
 | |
|         ship_mask = df['ships_idx'] == ship_idx
 | |
|         map_local_index_to_global_index = np.where(ship_mask)[0]
 | |
|         ship_df = df[ship_mask].reset_index(drop=True)
 | |
| 
 | |
|         # subset the test embeds
 | |
|         test_embeds = global_test_embeds[map_local_index_to_global_index]
 | |
| 
 | |
|         # generate the cosine sim matrix for the ship level
 | |
|         cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
 | |
| 
 | |
|         ##############################
 | |
|         # selection level
 | |
|         # The general idea:
 | |
|         # step 1: keep only pattern generations that belong to mdm list
 | |
|         # -> this removes totally wrong datasets that mapped to totally wrong things
 | |
|         # step 2: loop through the mdm list and isolate data in both train and test that
 | |
|         # belong to the same pattern class
 | |
|         # -> this is more tricky, because we have non-mdm mapping to correct classes
 | |
|         # -> so we have to find which candidate is most similar to the training data
 | |
| 
 | |
|         # it is very tricky to keep track of classification across multiple stages so we
 | |
|         # will use a boolean answer list to map answers back to the global answer list
 | |
| 
 | |
|         # initialize the local answer list
 | |
|         ship_answer_list = np.ones(len(ship_df), dtype=bool)
 | |
| 
 | |
|         ###########
 | |
|         # STEP 1A: ensure that the predicted mapping labels are valid
 | |
|         pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
 | |
|         pattern_match_mask = pattern_match_mask.astype(bool)
 | |
|         # anything not in the pattern_match_mask are hallucinations
 | |
|         # this has the same effect as setting any wrong generations as non-mdm
 | |
|         ship_answer_list[~pattern_match_mask] = False
 | |
| 
 | |
|         # # STEP 1B: subset our de-duplication to use only predicted_mdm labels
 | |
|         # p_mdm_mask = ship_df['p_mdm']
 | |
|         # # assign false to any non p_mdm entries
 | |
|         # ship_answer_list[~p_mdm_mask] = False
 | |
|         # # modify pattern_match_mask to remove any non p_mdm values
 | |
|         # pattern_match_mask = pattern_match_mask & p_mdm_mask
 | |
| 
 | |
|         ###########
 | |
|         # STEP 2
 | |
|         # we now go through each class found in our generated set
 | |
| 
 | |
|         # we want to identify per-ship mdm classes
 | |
|         ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
 | |
| 
 | |
|         # this function performs the selection given a class
 | |
|         # it takes in the cos_sim_matrix
 | |
|         # it returns the selection by mutating the answer_list
 | |
|         # it sets all relevant idxs to False initially, then sets the selected values to True
 | |
|         def selection_for_class(select_class, cos_sim_matrix, answer_list):
 | |
| 
 | |
|             # create local copy of answer_list
 | |
|             ship_answer_list = answer_list.copy()
 | |
|             # sample_df = ship_df[ship_df['p_mapping'] == select_class]
 | |
| 
 | |
| 
 | |
|             # we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
 | |
|             # selected_idx_list = sample_df.index.to_numpy()
 | |
|             selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
 | |
| 
 | |
|             # basic assumption check
 | |
| 
 | |
|             # generate the masking arrays for both test and train embeddings
 | |
|             # we select a tuple from each group, and use that as a candidate for selection
 | |
|             test_candidates_mask = ship_df['p_mapping'] == select_class
 | |
|             # we make candidates to compare against in the data sharing the same class
 | |
|             train_candidates_mask = train_df['mapping'] == select_class
 | |
| 
 | |
|             if sum(train_candidates_mask) == 0:
 | |
|                 # it can be the case that the mdm-valid mapping class is not found in training data
 | |
|                 # print("not found in training data", select_class)
 | |
|                 ship_answer_list[selected_idx_list] = False
 | |
|                 return ship_answer_list
 | |
| 
 | |
|             # perform selection
 | |
|             # max_idx is the id
 | |
|             max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
 | |
| 
 | |
| 
 | |
|             # set the duplicate entries to False
 | |
|             ship_answer_list[selected_idx_list] = False
 | |
|             # then only set the one unique chosen value as True
 | |
|             if max_score > threshold:
 | |
|                 ship_answer_list[max_idx] = True
 | |
| 
 | |
|             return ship_answer_list 
 | |
| 
 | |
|         # we choose one mdm class
 | |
|         for select_class in ship_predicted_classes:
 | |
|             # this resulted in big improvement
 | |
|             if (sum(ship_df['p_mapping'] == select_class)) > 0:
 | |
|                 ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
 | |
| 
 | |
|         # we want to write back to global_answer
 | |
|         # first we convert local indices to global indices
 | |
|         ship_local_indices = np.where(ship_answer_list)[0]
 | |
|         ship_global_indices = map_local_index_to_global_index[ship_local_indices]
 | |
|         global_answer[ship_global_indices] = True
 | |
| 
 | |
|     # we set all unselected values to None
 | |
|     df.loc[~global_answer, 'p_thing'] = None
 | |
|     df.loc[~global_answer, 'p_property'] = None
 | |
| 
 | |
| 
 | |
|     if diagnostic:
 | |
|         print(80 * '*')
 | |
| 
 | |
|         y_true = df['MDM'].to_list()
 | |
|         y_pred = global_answer
 | |
| 
 | |
|         tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
 | |
|         print(f"tp: {tp}")
 | |
|         print(f"tn: {tn}")
 | |
|         print(f"fp: {fp}")
 | |
|         print(f"fn: {fn}")
 | |
| 
 | |
|         # compute metrics
 | |
|         accuracy = accuracy_score(y_true, y_pred)
 | |
|         f1 = f1_score(y_true, y_pred)
 | |
|         precision = precision_score(y_true, y_pred)
 | |
|         recall = recall_score(y_true, y_pred)
 | |
| 
 | |
|         # print the results
 | |
|         print(f'accuracy: {accuracy:.5f}')
 | |
|         print(f'f1 score: {f1:.5f}')
 | |
|         print(f'Precision: {precision:.5f}')
 | |
|         print(f'Recall: {recall:.5f}')
 | |
| 
 | |
| 
 | |
|     return df
 | |
| 
 | |
| 
 |