# %% import pandas as pd import os import glob # directory for checkpoints checkpoint_directory = '../../train/mapping_t5_complete_desc_unit_name' def select(fold): # import test data data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv" df = pd.read_csv(data_path, skipinitialspace=True) # get target data data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv" train_df = pd.read_csv(data_path, skipinitialspace=True) # processing to help with selection later train_df['thing_property'] = train_df['thing'] + " " + train_df['property'] ########################################## # Process the dataframe for selection # we start to cull predictions from here data_master_path = "../../data_import/exports/data_model_master_export.csv" df_master = pd.read_csv(data_master_path, skipinitialspace=True) data_mapping = df # Generate patterns data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True) data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True) data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern'] df_master['master_pattern'] = df_master['thing'] + " " + df_master['property'] # Create a set of unique patterns from master for fast lookup master_patterns = set(df_master['master_pattern']) # thing_patterns = set(df_master['thing']) # Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns) # check if prediction is in MDM data_mapping['p_thing_pattern'] = data_mapping['p_thing'].str.replace(r'\d', '#', regex=True) data_mapping['p_property_pattern'] = data_mapping['p_property'].str.replace(r'\d', '#', regex=True) data_mapping['p_pattern'] = data_mapping['p_thing_pattern'] + " " + data_mapping['p_property_pattern'] data_mapping['p_MDM'] = data_mapping['p_pattern'].apply(lambda x: x in master_patterns) df = data_mapping # selection ########################################### # we now have to perform selection # we restrict to predictions of a class of a ship # then perform similarity selection with in-distribution data # the magic is in performing per-class selection, not global # import importlib import selection # importlib.reload(selection) selector = selection.Selector(input_df=df, reference_df=train_df, fold=fold) ########################################## # run inference # checkpoint # Use glob to find matching paths directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}') # Use glob to find matching paths # path is usually checkpoint_fold_1/checkpoint- # we are guaranteed to save only 1 checkpoint from training pattern = 'checkpoint-*' checkpoint_path = glob.glob(os.path.join(directory, pattern))[0] tp, tn, fp, fn = selector.run_selection(checkpoint_path=checkpoint_path) # write output to file output.txt with open("output.txt", "a") as f: print(80 * '*', file=f) print(f'Statistics for fold {fold}', file=f) print(f"tp: {tp}", file=f) print(f"tn: {tn}", file=f) print(f"fp: {fp}", file=f) print(f"fn: {fn}", file=f) print(f"fold: {fold}", file=f) print("accuracy: ", (tp+tn)/(tp+tn+fp+fn), file=f) print("f1_score: ", (2*tp)/((2*tp) + fp + fn), file=f) print("precision: ", (tp)/(tp+fp), file=f) print("recall: ", (tp)/(tp+fn), file=f) ########################################### # Execute for all folds # reset file before writing to it with open("output.txt", "w") as f: print('', file=f) for fold in [1,2,3,4,5]: select(fold) # %%