# %% # from datasets import load_from_disk import os os.environ['NCCL_P2P_DISABLE'] = '1' os.environ['NCCL_IB_DISABLE'] = '1' os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" import torch from transformers import ( AutoTokenizer, AutoModelForSequenceClassification, DataCollatorWithPadding, Trainer, EarlyStoppingCallback, TrainingArguments, TrainerCallback ) import evaluate import numpy as np import pandas as pd # import matplotlib.pyplot as plt from datasets import Dataset, DatasetDict torch.set_float32_matmul_precision('high') # %% class SaveModelCallback(TrainerCallback): """Custom callback to save model weights at specific intervals during training.""" def __init__(self, save_interval): super().__init__() self.save_interval = save_interval # save every 'save_interval' steps def on_step_end(self, args, state, control, **kwargs): """This method is called at the end of each training step.""" # Check if it's time to save (based on global_step and save_interval) if state.global_step % self.save_interval == 0 and state.global_step > 0: # Path where the model should be saved output_dir = f"{args.output_dir}/checkpoint_{state.global_step}" model = kwargs['model'] model.save_pretrained(output_dir) print(f"Model saved to {output_dir} at step {state.global_step}") # %% # we need to create the mdm_list # import the full mdm-only file data_path = '../../data_import/exports/data_mapping_mdm.csv' full_df = pd.read_csv(data_path, skipinitialspace=True) # rather than use pattern, we use the real thing and property # mdm_list = sorted(list((set(full_df['pattern'])))) thing_property = full_df['thing'] + full_df['property'] thing_property = thing_property.to_list() mdm_list = sorted(list(set(thing_property))) # %% id2label = {} label2id = {} for idx, val in enumerate(mdm_list): id2label[idx] = val label2id[val] = idx # %% # outputs a list of dictionaries # processes dataframe into lists of dictionaries # each element maps input to output # input: tag_description # output: class label def process_df_to_dict(df, mdm_list): output_list = [] for _, row in df.iterrows(): desc = f"{row['tag_description']}" unit = f"{row['unit']}" pattern = f"{row['thing'] + row['property']}" try: index = mdm_list.index(pattern) except ValueError: print("Error: value not found in MDM list") index = -1 element = { 'text' : f"{desc}{unit}", 'label': index, } output_list.append(element) return output_list def create_split_dataset(fold, mdm_list): # train data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv" train_df = pd.read_csv(data_path, skipinitialspace=True) # valid data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv" validation_df = pd.read_csv(data_path, skipinitialspace=True) combined_data = DatasetDict({ 'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)), 'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)), }) return combined_data # %% # function to perform training for a given fold def train(fold): save_path = 'checkpoint' split_datasets = create_split_dataset(fold, mdm_list) # prepare tokenizer # model_checkpoint = "distilbert/distilbert-base-uncased" model_checkpoint = 'google-bert/bert-base-cased' tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True) # Define additional special tokens additional_special_tokens = ["", "", "", "", "", "", "", "", ""] # Add the additional special tokens to the tokenizer tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) max_length = 120 # given a dataset entry, run it through the tokenizer def preprocess_function(example): input = example['text'] # text_target sets the corresponding label to inputs # there is no need to create a separate 'labels' model_inputs = tokenizer( input, max_length=max_length, truncation=True, padding=True ) return model_inputs # map maps function to each "row" in the dataset # aka the data in the immediate nesting tokenized_datasets = split_datasets.map( preprocess_function, batched=True, num_proc=8, remove_columns="text", ) # %% temp # tokenized_datasets['train'].rename_columns() # %% # create data collator data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # %% # compute metrics metric = evaluate.load("accuracy") def compute_metrics(eval_preds): preds, labels = eval_preds preds = np.argmax(preds, axis=1) return metric.compute(predictions=preds, references=labels) # %% # create id2label and label2id # %% model = AutoModelForSequenceClassification.from_pretrained( model_checkpoint, num_labels=len(mdm_list), id2label=id2label, label2id=label2id) # important! after extending tokens vocab model.resize_token_embeddings(len(tokenizer)) # model = torch.compile(model, backend="inductor", dynamic=True) # %% # Trainer training_args = TrainingArguments( output_dir=f"{save_path}", # eval_strategy="epoch", eval_strategy="no", logging_dir="tensorboard-log", logging_strategy="no", save_strategy="no", load_best_model_at_end=False, learning_rate=1e-5, per_device_train_batch_size=128, per_device_eval_batch_size=128, auto_find_batch_size=False, ddp_find_unused_parameters=False, weight_decay=0.01, save_total_limit=1, max_steps=1201, bf16=True, push_to_hub=False, remove_unused_columns=False, ) trainer = Trainer( model, training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, callbacks=[SaveModelCallback(save_interval=200)] ) # uncomment to load training from checkpoint # checkpoint_path = 'default_40_1/checkpoint-5600' # trainer.train(resume_from_checkpoint=checkpoint_path) trainer.train() # execute training for fold in [1]: print(fold) train(fold) # %%