{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Updated data saved to raw_data_s.csv\n" ] } ], "source": [ "import pandas as pd\n", "import re\n", "\n", "# Load the data_mapping CSV file\n", "data_mapping_file_path = '../../data_import/raw_data.csv' # Adjust this path to your actual file location\n", "# data_mapping_file_path = 'raw_data_add_tag.csv' # Adjust this path to your actual file location\n", "data_mapping = pd.read_csv(data_mapping_file_path, dtype=str)\n", "\n", "# Backup the original tag_description\n", "data_mapping['org_tag_description'] = data_mapping['tag_description']\n", "\n", "# Ensure all values in the 'tag_description' column are strings\n", "data_mapping['tag_description'] = data_mapping['tag_description'].fillna('').astype(str)\n", "data_mapping['tag_description'] = data_mapping['tag_description'].str.replace(r'[()]', ' ', regex=True)\n", "\n", "# Function to find tokens containing numbers\n", "def find_tokens_with_numbers(description):\n", " tokens = description.split() # Tokenize by spaces\n", " number_tokens = [token for token in tokens if re.search(r'\\d', token)]\n", " return number_tokens\n", "\n", "# Function to process tokens\n", "def process_token(token):\n", " # Step 1: Replace '_' or '-' adjacent to numbers with spaces\n", " token = re.sub(r'(_|-)(?=\\d)', ' ', token)\n", " token = re.sub(r'(?<=\\d)(_|-)', ' ', token)\n", "\n", " # Step 2: Insert spaces between letters and numbers where no separator exists\n", " token = re.sub(r'([A-Za-z])(\\d+)', r'\\1 \\2', token)\n", " token = re.sub(r'(\\d+)([A-Za-z])', r'\\1 \\2', token)\n", "\n", " # Step 3: Handle cases like \"NO.1\" or \"No.1\" to become \"No. 1\"\n", " token = re.sub(r'([A-Za-z]+)\\.(\\d+)', r'\\1. \\2', token)\n", "\n", " # Clean multiple spaces and strip\n", " token = re.sub(r'\\s+', ' ', token).strip()\n", " return token\n", "\n", "# Apply the process to each row in the 'tag_description' column\n", "for index, row in data_mapping.iterrows():\n", " original_description = row['tag_description']\n", " number_tokens = find_tokens_with_numbers(original_description)\n", "\n", " # Process each token containing numbers\n", " processed_tokens = [process_token(token) for token in number_tokens]\n", "\n", " # Replace the original tokens with processed tokens in the tag_description\n", " new_description = original_description\n", " for original_token, processed_token in zip(number_tokens, processed_tokens):\n", " new_description = new_description.replace(original_token, processed_token)\n", "\n", " # Update the data_mapping with the modified description\n", " data_mapping.at[index, 'tag_description'] = new_description\n", "\n", "# Save the updated data_mapping to a new CSV file\n", "output_file_path = 'raw_data_s.csv'\n", "data_mapping.to_csv(output_file_path, index=False, encoding='utf-8-sig')\n", "\n", "print(f\"Updated data saved to {output_file_path}\")\n" ] } ], "metadata": { "kernelspec": { "display_name": "torch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }