{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test_p_c.csv saved for Group 1 at 0.class_document/knn_tfidf/1/test_p_c.csv\n", "test_p_c.csv saved for Group 2 at 0.class_document/knn_tfidf/2/test_p_c.csv\n", "test_p_c.csv saved for Group 3 at 0.class_document/knn_tfidf/3/test_p_c.csv\n", "test_p_c.csv saved for Group 4 at 0.class_document/knn_tfidf/4/test_p_c.csv\n", "test_p_c.csv saved for Group 5 at 0.class_document/knn_tfidf/5/test_p_c.csv\n", "Average Accuracy (MDM=True) across all groups with n_neighbors=5: 84.37%\n", "\n", "Final Results:\n", "n_neighbors=1, Average Accuracy: 84.37%\n" ] } ], "source": [ "import pandas as pd\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.neighbors import NearestNeighbors\n", "import os\n", "\n", "# Initialize variables to store overall accuracy results\n", "average_accuracies = []\n", "\n", "# Loop through n_neighbors values from 1 to 52\n", "for n in range(5, 6):\n", " accuracies = [] # Store accuracy for each group\n", "\n", " # Loop through group numbers from 1 to 5\n", " for group_number in range(1, 6):\n", " train_all_path = f'../../data_preprocess/dataset/{group_number}/train_all.csv'\n", " test_path = f'../../translation/0.result/{group_number}/test_p.csv'\n", "\n", " if not os.path.exists(test_path):\n", " print(f\"Test file for Group {group_number} does not exist. Skipping...\")\n", " continue\n", "\n", " # Load the train_all and test CSVs\n", " train_all_csv = pd.read_csv(train_all_path, low_memory=False)\n", " test_csv = pd.read_csv(test_path, low_memory=False)\n", "\n", " train_all_csv['tag_description'] = train_all_csv['tag_description'].fillna('')\n", " test_csv['tag_description'] = test_csv['tag_description'].fillna('')\n", "\n", " test_csv['c_thing'] = ''\n", " test_csv['c_property'] = ''\n", " test_csv['c_score'] = ''\n", " test_csv['c_duplicate'] = 0\n", "\n", " combined_tag_descriptions = train_all_csv['tag_description'].tolist()\n", "\n", " # TfidfVectorizer 사용\n", " vectorizer = TfidfVectorizer(token_pattern=r'\\S+', ngram_range=(1, 1), use_idf=True)\n", " vectorizer.fit(combined_tag_descriptions)\n", "\n", " train_all_tfidf_matrix = vectorizer.transform(train_all_csv['tag_description'])\n", " test_tfidf_matrix = vectorizer.transform(test_csv['tag_description'])\n", "\n", " # KNN에서 유클리디안 거리를 이용\n", " knn = NearestNeighbors(n_neighbors=n, metric='cosine', n_jobs=-1)\n", " knn.fit(train_all_tfidf_matrix)\n", "\n", " distances, indices = knn.kneighbors(test_tfidf_matrix)\n", "\n", " predicted_things = []\n", " predicted_properties = []\n", " predicted_scores = []\n", "\n", " for i in range(len(test_csv)):\n", " neighbor_index = indices[i][0]\n", " distance = distances[i][0]\n", "\n", " neighbor_thing = train_all_csv.iloc[neighbor_index]['thing']\n", " neighbor_property = train_all_csv.iloc[neighbor_index]['property']\n", "\n", " predicted_things.append(neighbor_thing)\n", " predicted_properties.append(neighbor_property)\n", "\n", " # 거리 기반으로 유사도 점수 계산\n", " predicted_score = 1 - distance\n", " predicted_scores.append(predicted_score)\n", "\n", " test_csv['c_thing'] = predicted_things\n", " test_csv['c_property'] = predicted_properties\n", " test_csv['c_score'] = predicted_scores\n", "\n", " test_csv['cthing_correct'] = test_csv['thing'] == test_csv['c_thing']\n", " test_csv['cproperty_correct'] = test_csv['property'] == test_csv['c_property']\n", " test_csv['ctp_correct'] = test_csv['cthing_correct'] & test_csv['cproperty_correct']\n", "\n", " mdm_true_count = len(test_csv[test_csv['MDM'] == True])\n", " accuracy = (test_csv['ctp_correct'].sum() / mdm_true_count) * 100\n", " accuracies.append(accuracy)\n", "\n", " # n_neighbors가 5일 때, test_csv를 지정된 경로에 저장\n", " if n == 5:\n", " output_path = f'0.class_document/knn_tfidf/{group_number}/test_p_c.csv'\n", " os.makedirs(os.path.dirname(output_path), exist_ok=True) # 폴더가 없을 경우 생성\n", " test_csv.to_csv(output_path, index=False)\n", " print(f\"test_p_c.csv saved for Group {group_number} at {output_path}\")\n", "\n", " # Calculate the average accuracy for the current n_neighbors value\n", " average_accuracy = sum(accuracies) / len(accuracies)\n", " average_accuracies.append(average_accuracy)\n", " print(f\"Average Accuracy (MDM=True) across all groups with n_neighbors={n}: {average_accuracy:.2f}%\")\n", "\n", "# Print overall results for all n_neighbors values\n", "print(\"\\nFinal Results:\")\n", "for n, avg_accuracy in zip(range(1, 53), average_accuracies):\n", " print(f\"n_neighbors={n}, Average Accuracy: {avg_accuracy:.2f}%\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] } ], "metadata": { "kernelspec": { "display_name": "torch", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }