import pandas as pd import re # Load the data_mapping CSV file data_mapping_file_path = 'exports/data_mapping.csv' # Adjust this path to your actual file location data_mapping = pd.read_csv(data_mapping_file_path, dtype=str) df_master = pd.read_csv('exports/data_model_master_export.csv') # Generate patterns data_mapping['thing_pattern'] = data_mapping['thing'].str.replace(r'\d', '#', regex=True) data_mapping['property_pattern'] = data_mapping['property'].str.replace(r'\d', '#', regex=True) data_mapping['pattern'] = data_mapping['thing_pattern'] + " " + data_mapping['property_pattern'] df_master['master_pattern'] = df_master['thing'] + " " + df_master['property'] # Create a set of unique patterns from master for fast lookup master_patterns = set(df_master['master_pattern']) # Check each pattern in data_mapping if it exists in df_master and assign the "MDM" field data_mapping['MDM'] = data_mapping['pattern'].apply(lambda x: x in master_patterns) # Remove specified fields fields_to_remove = ['equip_type_code', 'tx_period', 'tx_type', 'on_change_yn', 'scaling_const', 'description', 'updated_time', 'status_code', 'is_timeout'] merged_data = data_mapping.drop(columns=fields_to_remove) # Save the updated DataFrame to a new CSV file output_file_path = 'exports/raw_data.csv' merged_data.to_csv(output_file_path, index=False, encoding='utf-8-sig') print(f"Updated data saved to {output_file_path}") # Filter the DataFrame where MDM is TRUE data_mapping_mdm_true = merged_data[merged_data['MDM']] # Save the filtered DataFrame to a new CSV file mdm_true_output_file_path = 'exports/data_mapping_mdm.csv' data_mapping_mdm_true.to_csv(mdm_true_output_file_path, index=False, encoding='utf-8-sig') print(f"MDM TRUE data saved to {mdm_true_output_file_path}")