Compare commits
2 Commits
c5760d127d
...
086b867d91
Author | SHA1 | Date |
---|---|---|
|
086b867d91 | |
|
6072e4408c |
|
@ -10,6 +10,12 @@ mdm_list = sorted(list((set(full_df['pattern']))))
|
|||
# %%
|
||||
full_df
|
||||
|
||||
# %%
|
||||
mdm_list
|
||||
|
||||
# %%
|
||||
mask = full_df['pattern'] == 'GE#Flow FGMassFlow'
|
||||
full_df[mask]
|
||||
# %%
|
||||
mask1 = full_df['thing'] == 'ME1TurboCharger1'
|
||||
mask2 = full_df['property'] == 'LOInletPress'
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
This section is to evaluate the combined (relevant-class prediction) and
|
||||
(mapping prediction) to evaluate the final correct mapping accuracy.
|
|
@ -0,0 +1,34 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# following code computes final mapping + classification accuracy
|
||||
# %%
|
||||
def run(fold):
|
||||
data_path = f'../relevant_class/binary_classifier_desc_unit/classification_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
p_mdm = df['p_mdm']
|
||||
|
||||
# data_path = f'../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
data_path = f'../train/modified_t5_decoder_4_layers/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
actual_mdm = df['MDM']
|
||||
|
||||
thing_correctness = df['thing'] == df['p_thing']
|
||||
property_correctness = df['property'] == df['p_property']
|
||||
answer = thing_correctness & property_correctness
|
||||
|
||||
# if is non-MDM -> then should be unmapped
|
||||
# if is MDM -> then should be mapped correctly
|
||||
|
||||
# out of correctly predicted relevant data, how many are mapped correctly?
|
||||
correct_positive_mdm_and_map = sum(p_mdm & actual_mdm & answer)
|
||||
|
||||
# number of correctly predicted non-relevant data
|
||||
correct_negative_mdm = sum(~(p_mdm) & ~(actual_mdm))
|
||||
|
||||
overall_correct = (correct_positive_mdm_and_map + correct_negative_mdm)/len(actual_mdm)
|
||||
print(overall_correct)
|
||||
# %%
|
||||
for fold in [1,2,3,4,5]:
|
||||
run(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
exports
|
||||
output.txt
|
|
@ -0,0 +1,235 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
pred_labels = np.array(pred_labels, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df_export = pd.concat([test_df, df_out], axis=1)
|
||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
cm = confusion_matrix(y_true, y_pred)
|
||||
tn, fp, fn, tp = cm.ravel()
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f"tp: {tp}", file=f)
|
||||
print(f"tn: {tn}", file=f)
|
||||
print(f"fp: {fp}", file=f)
|
||||
print(f"fn: {fn}", file=f)
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,218 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {0: False, 1: True}
|
||||
label2id = {False: 0, True: 1}
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
||||
# reconstruct full training data with non-mdm data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
ships_list = list(set(test_df['ships_idx']))
|
||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||
|
||||
train_ships_set = set(train_ships_list)
|
||||
test_ships_set = set(ships_list)
|
||||
|
||||
# assertion for non data leakage
|
||||
assert not set(train_ships_set).intersection(test_ships_set)
|
||||
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
2
relevant_class/binary_classifier_desc_unit/classification_prediction/.gitignore
vendored
Normal file
2
relevant_class/binary_classifier_desc_unit/classification_prediction/.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
exports
|
||||
output.txt
|
|
@ -0,0 +1,235 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
pred_labels = np.array(pred_labels, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df_export = pd.concat([test_df, df_out], axis=1)
|
||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
cm = confusion_matrix(y_true, y_pred)
|
||||
tn, fp, fn, tp = cm.ravel()
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f"tp: {tp}", file=f)
|
||||
print(f"tn: {tn}", file=f)
|
||||
print(f"fp: {fp}", file=f)
|
||||
print(f"fn: {fn}", file=f)
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,219 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {0: False, 1: True}
|
||||
label2id = {False: 0, True: 1}
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
||||
# reconstruct full training data with non-mdm data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
ships_list = list(set(test_df['ships_idx']))
|
||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||
|
||||
train_ships_set = set(train_ships_list)
|
||||
test_ships_set = set(ships_list)
|
||||
|
||||
# assertion for non data leakage
|
||||
assert not set(train_ships_set).intersection(test_ships_set)
|
||||
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,3 @@
|
|||
__pycache__
|
||||
exports
|
||||
output.txt
|
|
@ -0,0 +1,4 @@
|
|||
# one-class classification by similarity
|
||||
|
||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
||||
to MDM
|
|
@ -0,0 +1,175 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
|
||||
##################################################
|
||||
# helper functions
|
||||
|
||||
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
|
||||
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
element = f"{desc}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
def compute_top_k(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
_, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return top_k_values[0][0]
|
||||
|
||||
|
||||
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||
|
||||
|
||||
sim_list = []
|
||||
for select_idx in tqdm(test_df.index):
|
||||
top_sim_value = compute_top_k(select_idx)
|
||||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||
best_threshold = 0
|
||||
best_f1 = 0
|
||||
for threshold in threshold_values:
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
if f1 > best_f1:
|
||||
best_threshold = threshold
|
||||
best_f1 = f1
|
||||
|
||||
# OR just manually set best_threshold
|
||||
# best_threshold = 0.90
|
||||
|
||||
# compute metrics again with best threshold
|
||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||
|
||||
# save
|
||||
pred_labels = np.array(predict_list, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print(f'Fold: {fold}', file=f)
|
||||
print(f'Best threshold: {best_threshold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
run_similarity_classifier(fold)
|
|
@ -0,0 +1,81 @@
|
|||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
class Retriever:
|
||||
def __init__(self, input_texts, model_checkpoint):
|
||||
# we need to generate the embedding from list of input strings
|
||||
self.embeddings = []
|
||||
self.inputs = input_texts
|
||||
model_checkpoint = model_checkpoint
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
model.to(self.device)
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
def make_embedding(self, batch_size=64):
|
||||
all_embeddings = self.embeddings
|
||||
input_texts = self.inputs
|
||||
|
||||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
||||
# Pass the input through the encoder and retrieve the embeddings
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||
# get last layer
|
||||
embeddings = encoder_outputs.hidden_states[-1]
|
||||
# get cls token embedding
|
||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
all_embeddings.append(cls_embeddings)
|
||||
|
||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||
|
||||
self.embeddings = all_embeddings
|
||||
|
||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||
device = 'cuda'
|
||||
batch1_size = batch1.size(0)
|
||||
batch2_size = batch2.size(0)
|
||||
batch2.to(device)
|
||||
|
||||
# Prepare an empty tensor to store results
|
||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||
|
||||
# Process batch1 in chunks
|
||||
for i in range(0, batch1_size, chunk_size):
|
||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||
|
||||
batch1_chunk.to(device)
|
||||
# Expand batch1 chunk and entire batch2 for comparison
|
||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||
|
||||
|
||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||
|
||||
# Compute cosine similarity by matrix multiplication and normalizing
|
||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||
|
||||
# Store the results in the appropriate part of the final tensor
|
||||
cos_sim[i:i + chunk_size] = sim_chunk
|
||||
|
||||
return cos_sim
|
|
@ -0,0 +1,3 @@
|
|||
__pycache__
|
||||
exports
|
||||
output.txt
|
|
@ -0,0 +1,4 @@
|
|||
# one-class classification by similarity
|
||||
|
||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
||||
to MDM
|
|
@ -0,0 +1,176 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
|
||||
##################################################
|
||||
# helper functions
|
||||
|
||||
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
|
||||
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
def compute_top_k(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
_, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return top_k_values[0][0]
|
||||
|
||||
|
||||
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||
|
||||
|
||||
sim_list = []
|
||||
for select_idx in tqdm(test_df.index):
|
||||
top_sim_value = compute_top_k(select_idx)
|
||||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||
best_threshold = 0
|
||||
best_f1 = 0
|
||||
for threshold in threshold_values:
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
if f1 > best_f1:
|
||||
best_threshold = threshold
|
||||
best_f1 = f1
|
||||
|
||||
# just manually set best_threshold
|
||||
# best_threshold = 0.90
|
||||
|
||||
# compute metrics again with best threshold
|
||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||
|
||||
# save
|
||||
pred_labels = np.array(predict_list, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print(f'Fold: {fold}', file=f)
|
||||
print(f'Best threshold: {best_threshold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
run_similarity_classifier(fold)
|
|
@ -0,0 +1,81 @@
|
|||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
class Retriever:
|
||||
def __init__(self, input_texts, model_checkpoint):
|
||||
# we need to generate the embedding from list of input strings
|
||||
self.embeddings = []
|
||||
self.inputs = input_texts
|
||||
model_checkpoint = model_checkpoint
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
model.to(self.device)
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
def make_embedding(self, batch_size=64):
|
||||
all_embeddings = self.embeddings
|
||||
input_texts = self.inputs
|
||||
|
||||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
||||
# Pass the input through the encoder and retrieve the embeddings
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||
# get last layer
|
||||
embeddings = encoder_outputs.hidden_states[-1]
|
||||
# get cls token embedding
|
||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
all_embeddings.append(cls_embeddings)
|
||||
|
||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||
|
||||
self.embeddings = all_embeddings
|
||||
|
||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||
device = 'cuda'
|
||||
batch1_size = batch1.size(0)
|
||||
batch2_size = batch2.size(0)
|
||||
batch2.to(device)
|
||||
|
||||
# Prepare an empty tensor to store results
|
||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||
|
||||
# Process batch1 in chunks
|
||||
for i in range(0, batch1_size, chunk_size):
|
||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||
|
||||
batch1_chunk.to(device)
|
||||
# Expand batch1 chunk and entire batch2 for comparison
|
||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||
|
||||
|
||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||
|
||||
# Compute cosine similarity by matrix multiplication and normalizing
|
||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||
|
||||
# Store the results in the appropriate part of the final tensor
|
||||
cos_sim[i:i + chunk_size] = sim_chunk
|
||||
|
||||
return cos_sim
|
|
@ -176,9 +176,9 @@ def train(fold):
|
|||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -178,8 +178,8 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
__pycache__
|
|
@ -0,0 +1,125 @@
|
|||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from transformers import (
|
||||
T5PreTrainedModel,
|
||||
T5Model
|
||||
|
||||
)
|
||||
|
||||
from transformers.modeling_outputs import (
|
||||
SequenceClassifierOutput,
|
||||
)
|
||||
|
||||
def mean_pooling(encoder_outputs, attention_mask):
|
||||
"""
|
||||
Perform mean pooling over encoder outputs, considering the attention mask.
|
||||
"""
|
||||
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
|
||||
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
|
||||
masked_hidden_states = hidden_states * mask # Zero out padding tokens
|
||||
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
|
||||
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
|
||||
return sum_hidden_states / sum_mask # Mean pooling
|
||||
|
||||
|
||||
class T5EncoderForSequenceClassification(T5PreTrainedModel):
|
||||
|
||||
def __init__(self, checkpoint, tokenizer, config, num_labels):
|
||||
super().__init__(config)
|
||||
self.num_labels = num_labels
|
||||
self.config = config
|
||||
|
||||
# we force the loading of a pre-trained model here
|
||||
self.t5 = T5Model.from_pretrained(checkpoint)
|
||||
self.t5.resize_token_embeddings(len(tokenizer))
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
|
||||
# encoder_outputs = self.t5.encoder(
|
||||
# input_ids,
|
||||
# attention_mask=attention_mask,
|
||||
# head_mask=head_mask,
|
||||
# inputs_embeds=inputs_embeds,
|
||||
# output_attentions=output_attentions,
|
||||
# output_hidden_states=output_hidden_states,
|
||||
# return_dict=return_dict,
|
||||
# )
|
||||
|
||||
|
||||
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
|
||||
# last_hidden_state = encoder_outputs.last_hidden_state
|
||||
# use mean of hidden state
|
||||
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
|
||||
|
||||
# Use the hidden state of the first token as the sequence representation
|
||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
|
||||
# pooled_output = encoder_outputs[1]
|
||||
|
||||
pooled_output = self.dropout(pooled_output)
|
||||
logits = self.classifier(pooled_output)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
if not return_dict:
|
||||
output = (logits,) + encoder_outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
)
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
|
||||
Accuracy for fold 1: 0.0
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,236 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
||||
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# Filter out weights related to the classification head
|
||||
# given name format: t5.encoder.embed_tokens.weight
|
||||
# we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
|
||||
# for key, param in model.state_dict().items():
|
||||
# if key in t5_weights:
|
||||
# print(f"{key}: Successfully overridden")
|
||||
# else:
|
||||
# print(f"{key}: Retained original weights")
|
||||
|
||||
|
||||
# Freeze the decoder
|
||||
for param in model.decoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Freeze the shared embedding layer
|
||||
for param in model.shared.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9342167534311405
|
||||
Accuracy for fold 2: 0.883177570093458
|
||||
Accuracy for fold 3: 0.963855421686747
|
||||
Accuracy for fold 4: 0.9705042816365367
|
||||
Accuracy for fold 5: 0.9051763628034815
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,235 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
|
||||
# for key, param in model.state_dict().items():
|
||||
# if key in t5_weights:
|
||||
# print(f"{key}: Successfully overridden")
|
||||
# else:
|
||||
# print(f"{key}: Retained original weights")
|
||||
|
||||
|
||||
# Freeze the encoder
|
||||
for param in model.encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Freeze the shared embedding layer
|
||||
for param in model.shared.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9427354472314246
|
||||
Accuracy for fold 2: 0.8859813084112149
|
||||
Accuracy for fold 3: 0.9683734939759037
|
||||
Accuracy for fold 4: 0.9762131303520457
|
||||
Accuracy for fold 5: 0.907924874026569
|
||||
Accuracy for fold 1: 0.9242782773308093
|
||||
Accuracy for fold 2: 0.9126168224299065
|
||||
Accuracy for fold 3: 0.9643574297188755
|
||||
Accuracy for fold 4: 0.9595623215984777
|
||||
Accuracy for fold 5: 0.8950984883188273
|
||||
|
|
|
@ -13,6 +13,7 @@ def infer_and_select(fold):
|
|||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
|
|
@ -120,14 +120,23 @@ def train(fold):
|
|||
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
checkpoint = load_file(checkpoint_path)
|
||||
# Filter out weights related to the classification head
|
||||
t5_weights = {key: value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
# given name format: t5.encoder.embed_tokens.weight
|
||||
# we want: encoder.embed.tokens.weight
|
||||
t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
# important! after extending tokens vocab
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
|
||||
for key, param in model.state_dict().items():
|
||||
if key in t5_weights:
|
||||
print(f"{key}: Successfully overridden")
|
||||
else:
|
||||
print(f"{key}: Retained original weights")
|
||||
|
||||
|
||||
# Freeze the encoder
|
||||
for param in model.encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
@ -194,7 +203,7 @@ def train(fold):
|
|||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
|
|
|
@ -35,12 +35,13 @@ torch.set_float32_matmul_precision('high')
|
|||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
|
||||
# # rather than use pattern, we use the real thing and property
|
||||
# thing_property = full_df['thing'] + full_df['property']
|
||||
# thing_property = thing_property.to_list()
|
||||
# mdm_list = sorted(list(set(thing_property)))
|
||||
thing_property = full_df['thing'] + full_df['property']
|
||||
thing_property = thing_property.to_list()
|
||||
mdm_list = sorted(list(set(thing_property)))
|
||||
print("number of classes: ", len(mdm_list))
|
||||
|
||||
|
||||
# %%
|
||||
|
@ -62,8 +63,8 @@ def process_df_to_dict(df, mdm_list):
|
|||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
# pattern = f"{row['thing'] + row['property']}"
|
||||
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
||||
pattern = f"{row['thing'] + row['property']}"
|
||||
# pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
|
@ -137,7 +138,7 @@ def train(fold):
|
|||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# %% temp # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
|
@ -189,10 +190,10 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
ddp_find_unused_parameters=False, # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1 @@
|
|||
__pycache__
|
|
@ -0,0 +1,125 @@
|
|||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from transformers import (
|
||||
T5PreTrainedModel,
|
||||
T5Model
|
||||
|
||||
)
|
||||
|
||||
from transformers.modeling_outputs import (
|
||||
SequenceClassifierOutput,
|
||||
)
|
||||
|
||||
def mean_pooling(encoder_outputs, attention_mask):
|
||||
"""
|
||||
Perform mean pooling over encoder outputs, considering the attention mask.
|
||||
"""
|
||||
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
|
||||
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
|
||||
masked_hidden_states = hidden_states * mask # Zero out padding tokens
|
||||
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
|
||||
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
|
||||
return sum_hidden_states / sum_mask # Mean pooling
|
||||
|
||||
|
||||
class T5EncoderForSequenceClassification(T5PreTrainedModel):
|
||||
|
||||
def __init__(self, checkpoint, tokenizer, config, num_labels):
|
||||
super().__init__(config)
|
||||
self.num_labels = num_labels
|
||||
self.config = config
|
||||
|
||||
# we force the loading of a pre-trained model here
|
||||
self.t5 = T5Model.from_pretrained(checkpoint)
|
||||
self.t5.resize_token_embeddings(len(tokenizer))
|
||||
classifier_dropout = (
|
||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||
)
|
||||
self.dropout = nn.Dropout(classifier_dropout)
|
||||
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
token_type_ids: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
|
||||
# encoder_outputs = self.t5.encoder(
|
||||
# input_ids,
|
||||
# attention_mask=attention_mask,
|
||||
# head_mask=head_mask,
|
||||
# inputs_embeds=inputs_embeds,
|
||||
# output_attentions=output_attentions,
|
||||
# output_hidden_states=output_hidden_states,
|
||||
# return_dict=return_dict,
|
||||
# )
|
||||
|
||||
|
||||
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
|
||||
# last_hidden_state = encoder_outputs.last_hidden_state
|
||||
# use mean of hidden state
|
||||
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
|
||||
|
||||
# Use the hidden state of the first token as the sequence representation
|
||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
|
||||
# pooled_output = encoder_outputs[1]
|
||||
|
||||
pooled_output = self.dropout(pooled_output)
|
||||
logits = self.classifier(pooled_output)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(logits, labels)
|
||||
if not return_dict:
|
||||
output = (logits,) + encoder_outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=encoder_outputs.hidden_states,
|
||||
attentions=encoder_outputs.attentions,
|
||||
)
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9394226218646474
|
||||
Accuracy for fold 2: 0.9107476635514019
|
||||
Accuracy for fold 3: 0.9548192771084337
|
||||
Accuracy for fold 4: 0.972882968601332
|
||||
Accuracy for fold 5: 0.8996793403573065
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,234 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
||||
|
||||
from safetensors.torch import load_file
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# Load the checkpoint
|
||||
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
checkpoint = load_file(checkpoint_path)
|
||||
# Filter out weights related to the classification head
|
||||
# given name format: t5.encoder.embed_tokens.weight
|
||||
# we want: encoder.embed.tokens.weight
|
||||
t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
|
||||
for key, param in model.state_dict().items():
|
||||
if key in t5_weights:
|
||||
print(f"{key}: Successfully overridden")
|
||||
else:
|
||||
print(f"{key}: Retained original weights")
|
||||
|
||||
# Freeze the encoder
|
||||
for param in model.encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Freeze the shared embedding layer
|
||||
for param in model.shared.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,228 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments,
|
||||
T5Config,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
mdm_list = sorted(list((set(full_df['pattern']))))
|
||||
|
||||
# # rather than use pattern, we use the real thing and property
|
||||
# thing_property = full_df['thing'] + full_df['property']
|
||||
# thing_property = thing_property.to_list()
|
||||
# mdm_list = sorted(list(set(thing_property)))
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {}
|
||||
label2id = {}
|
||||
for idx, val in enumerate(mdm_list):
|
||||
id2label[idx] = val
|
||||
label2id[val] = idx
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df, mdm_list):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
# pattern = f"{row['thing'] + row['property']}"
|
||||
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
||||
try:
|
||||
index = mdm_list.index(pattern)
|
||||
except ValueError:
|
||||
print("Error: value not found in MDM list")
|
||||
index = -1
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': index,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold, mdm_list):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}a'
|
||||
split_datasets = create_split_dataset(fold, mdm_list)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
# model = AutoModelForSequenceClassification.from_pretrained(
|
||||
# model_checkpoint,
|
||||
# num_labels=len(mdm_list),
|
||||
# id2label=id2label,
|
||||
# label2id=label2id)
|
||||
model = T5EncoderForSequenceClassification(
|
||||
checkpoint=model_checkpoint,
|
||||
tokenizer=tokenizer,
|
||||
config=T5Config.from_pretrained(model_checkpoint),
|
||||
num_labels=len(mdm_list)
|
||||
)
|
||||
# important! after extending tokens vocab
|
||||
# model.t5.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -13,6 +13,7 @@ def infer_and_select(fold):
|
|||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9403691433980123
|
||||
Accuracy for fold 2: 0.9046728971962616
|
||||
Accuracy for fold 3: 0.9678714859437751
|
||||
Accuracy for fold 4: 0.9695528068506185
|
||||
Accuracy for fold 5: 0.902427851580394
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 12 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.8968291528632276
|
||||
Accuracy for fold 2: 0.8859813084112149
|
||||
Accuracy for fold 3: 0.9382530120481928
|
||||
Accuracy for fold 4: 0.9586108468125595
|
||||
Accuracy for fold 5: 0.8827301878149336
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 1 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9318504495977283
|
||||
Accuracy for fold 2: 0.8859813084112149
|
||||
Accuracy for fold 3: 0.9678714859437751
|
||||
Accuracy for fold 4: 0.9738344433872502
|
||||
Accuracy for fold 5: 0.9015116811726981
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 2 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9427354472314246
|
||||
Accuracy for fold 2: 0.9098130841121496
|
||||
Accuracy for fold 3: 0.964859437751004
|
||||
Accuracy for fold 4: 0.9719314938154139
|
||||
Accuracy for fold 5: 0.9070087036188731
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 3 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9503076194983436
|
||||
Accuracy for fold 2: 0.9135514018691588
|
||||
Accuracy for fold 3: 0.9698795180722891
|
||||
Accuracy for fold 4: 0.9790675547098002
|
||||
Accuracy for fold 5: 0.907924874026569
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 4 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9441552295314718
|
||||
Accuracy for fold 2: 0.9121495327102803
|
||||
Accuracy for fold 3: 0.963855421686747
|
||||
Accuracy for fold 4: 0.9752616555661275
|
||||
Accuracy for fold 5: 0.907924874026569
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 8 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9441552295314718
|
||||
Accuracy for fold 2: 0.9121495327102803
|
||||
Accuracy for fold 3: 0.963855421686747
|
||||
Accuracy for fold 4: 0.9752616555661275
|
||||
Accuracy for fold 5: 0.907924874026569
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,255 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers.models.t5.modeling_t5 import T5Block
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# model_checkpoint = "t5-small"
|
||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# model.config
|
||||
|
||||
# %%
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
|
||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
|
||||
# Access the decoder stack
|
||||
# config = T5Config("t5-small")
|
||||
|
||||
config = pretrained_model.config
|
||||
config.num_layers = 6
|
||||
config.num_decoder_layers = 9 # set new decoder layer count
|
||||
|
||||
model = T5ForConditionalGeneration(config)
|
||||
|
||||
model.shared = pretrained_model.shared
|
||||
model.encoder = pretrained_model.encoder
|
||||
|
||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
||||
for i, layer in enumerate(pretrained_decoder_weights):
|
||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
||||
|
||||
|
||||
# print number of decoder blocks
|
||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
||||
print(f'num_layers: {model.config.num_layers}')
|
||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
||||
|
||||
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
__pycache__
|
||||
exports/
|
|
@ -0,0 +1,168 @@
|
|||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import (
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
)
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
from datasets import Dataset
|
||||
import numpy as np
|
||||
|
||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
||||
|
||||
|
||||
class Inference():
|
||||
tokenizer: T5TokenizerFast
|
||||
model: torch.nn.Module
|
||||
dataloader: DataLoader
|
||||
|
||||
def __init__(self, checkpoint_path):
|
||||
self._create_tokenizer()
|
||||
self._load_model(checkpoint_path)
|
||||
|
||||
|
||||
def _create_tokenizer(self):
|
||||
# %%
|
||||
# load tokenizer
|
||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
def _load_model(self, checkpoint_path: str):
|
||||
# load model
|
||||
# Define the directory and the pattern
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
||||
model = torch.compile(model)
|
||||
# set model to eval
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
|
||||
|
||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
||||
"""
|
||||
*arguments*
|
||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
||||
- batch_size: the batch size of dataloader output
|
||||
- max_length: length of tokenizer output
|
||||
"""
|
||||
print("preparing dataloader")
|
||||
# convert each dataframe row into a dictionary
|
||||
# outputs a list of dictionaries
|
||||
|
||||
def _process_df(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
def _preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = self.tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
truncation=True,
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
||||
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
_preprocess_function,
|
||||
batched=True,
|
||||
num_proc=1,
|
||||
remove_columns=test_dataset.column_names,
|
||||
)
|
||||
# datasets = _preprocess_function(test_dataset)
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
||||
|
||||
# create dataloader
|
||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
||||
|
||||
|
||||
def generate(self):
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
MAX_GENERATE_LENGTH = 128
|
||||
|
||||
pred_generations = []
|
||||
pred_labels = []
|
||||
|
||||
print("start generation")
|
||||
for batch in tqdm(self.dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
pred_labels.extend(batch['labels'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
self.model.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
outputs = self.model.generate(input_ids,
|
||||
attention_mask=attention_mask,
|
||||
max_length=MAX_GENERATE_LENGTH)
|
||||
|
||||
# Decode the output and print the results
|
||||
pred_generations.extend(outputs.to("cpu"))
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# extract sequence and decode
|
||||
def extract_seq(tokens, start_value, end_value):
|
||||
if start_value not in tokens or end_value not in tokens:
|
||||
return None # Or handle this case according to your requirements
|
||||
start_id = np.where(tokens == start_value)[0][0]
|
||||
end_id = np.where(tokens == end_value)[0][0]
|
||||
|
||||
return tokens[start_id+1:end_id]
|
||||
|
||||
|
||||
def process_tensor_output(tokens):
|
||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
||||
p_thing = None
|
||||
p_property = None
|
||||
if (thing_seq is not None):
|
||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
||||
if (property_seq is not None):
|
||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
||||
return p_thing, p_property
|
||||
|
||||
# decode prediction labels
|
||||
def decode_preds(tokens_list):
|
||||
thing_prediction_list = []
|
||||
property_prediction_list = []
|
||||
for tokens in tokens_list:
|
||||
p_thing, p_property = process_tensor_output(tokens)
|
||||
thing_prediction_list.append(p_thing)
|
||||
property_prediction_list.append(p_property)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
||||
return thing_prediction_list, property_prediction_list
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.0
|
||||
Accuracy for fold 2: 0.0
|
||||
Accuracy for fold 3: 0.0
|
||||
Accuracy for fold 4: 0.0
|
||||
Accuracy for fold 5: 0.0
|
|
@ -0,0 +1,74 @@
|
|||
|
||||
import pandas as pd
|
||||
import os
|
||||
import glob
|
||||
from inference import Inference
|
||||
|
||||
checkpoint_directory = '../'
|
||||
|
||||
BATCH_SIZE = 512
|
||||
|
||||
def infer_and_select(fold):
|
||||
print(f"Inference for fold {fold}")
|
||||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# processing to help with selection later
|
||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
||||
|
||||
|
||||
##########################################
|
||||
# run inference
|
||||
# checkpoint
|
||||
# Use glob to find matching paths
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
|
||||
infer = Inference(checkpoint_path)
|
||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
||||
thing_prediction_list, property_prediction_list = infer.generate()
|
||||
|
||||
# add labels too
|
||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
||||
# Convert the list to a Pandas DataFrame
|
||||
df_out = pd.DataFrame({
|
||||
'p_thing': thing_prediction_list,
|
||||
'p_property': property_prediction_list
|
||||
})
|
||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
||||
df = pd.concat([df, df_out], axis=1)
|
||||
|
||||
# we can save the t5 generation output here
|
||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
||||
in_mdm = df['MDM']
|
||||
condition_correct_thing = df['p_thing'] == df['thing']
|
||||
condition_correct_property = df['p_property'] == df['property']
|
||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
||||
|
||||
# write output to file output.txt
|
||||
with open("output.txt", "a") as f:
|
||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
||||
|
||||
###########################################
|
||||
# Execute for all folds
|
||||
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
|
@ -0,0 +1,246 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from transformers import T5ForConditionalGeneration, T5Config
|
||||
from transformers import (
|
||||
T5Config,
|
||||
T5TokenizerFast,
|
||||
AutoModelForSeq2SeqLM,
|
||||
DataCollatorForSeq2Seq,
|
||||
Seq2SeqTrainer,
|
||||
EarlyStoppingCallback,
|
||||
Seq2SeqTrainingArguments,
|
||||
T5ForConditionalGeneration,
|
||||
T5Model
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# outputs a list of dictionaries
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = {
|
||||
'input' : f"{desc}{unit}",
|
||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
save_path = f'checkpoint_fold_{fold}b'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
model_checkpoint = "t5-small"
|
||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['input']
|
||||
target = example['output']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
text_target=target,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding="max_length"
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns=split_datasets["train"].column_names,
|
||||
)
|
||||
|
||||
# https://github.com/huggingface/transformers/pull/28414
|
||||
# model_checkpoint = "google/t5-efficient-tiny"
|
||||
# device_map set to auto to force it to load contiguous weights
|
||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
||||
|
||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
||||
# # Use glob to find matching paths
|
||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# # we are guaranteed to save only 1 checkpoint from training
|
||||
# pattern = 'checkpoint-*'
|
||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
# # Load the checkpoint
|
||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||
# checkpoint = load_file(checkpoint_path)
|
||||
# # Filter out weights related to the classification head
|
||||
# # given name format: t5.encoder.embed_tokens.weight
|
||||
# # we want: encoder.embed.tokens.weight
|
||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
||||
|
||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||
# change the token embedding size to match the shape
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
|
||||
# Create a T5 model with random weights
|
||||
config = T5Config.from_pretrained("t5-small") # Use T5 configuration
|
||||
random_model = T5ForConditionalGeneration(config) # Model initialized with random weights
|
||||
random_model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model.encoder = random_model.encoder
|
||||
model.shared = random_model.shared
|
||||
|
||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||
|
||||
# for key, param in model.state_dict().items():
|
||||
# if key in t5_weights:
|
||||
# print(f"{key}: Successfully overridden")
|
||||
# else:
|
||||
# print(f"{key}: Retained original weights")
|
||||
|
||||
|
||||
# Freeze the encoder
|
||||
for param in model.encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
# Freeze the shared embedding layer
|
||||
for param in model.shared.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
||||
metric = evaluate.load("sacrebleu")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
# In case the model returns more than the prediction logits
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
|
||||
decoded_preds = tokenizer.batch_decode(preds,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Replace -100s in the labels as we can't decode them
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels,
|
||||
skip_special_tokens=False)
|
||||
|
||||
# Remove <PAD> tokens from decoded predictions and labels
|
||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
||||
|
||||
# Some simple post-processing
|
||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
||||
# print(decoded_preds, decoded_labels)
|
||||
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
||||
return {"bleu": result["score"]}
|
||||
|
||||
|
||||
# Generation Config
|
||||
# from transformers import GenerationConfig
|
||||
gen_config = model.generation_config
|
||||
gen_config.max_length = 128
|
||||
|
||||
# compile
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# Trainer
|
||||
|
||||
args = Seq2SeqTrainingArguments(
|
||||
f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
predict_with_generate=True,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
generation_config=gen_config,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Seq2SeqTrainer(
|
||||
model,
|
||||
args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
data_collator=data_collator,
|
||||
tokenizer=tokenizer,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
|
@ -1,16 +1,27 @@
|
|||
#!/bin/bash
|
||||
|
||||
cd classification_bert_complete_desc
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd hybrid_t5_complete_desc_unit
|
||||
micromamba run -n hug accelerate launch train_encoder.py
|
||||
micromamba run -n hug accelerate launch train_decoder.py
|
||||
cd ..
|
||||
|
||||
cd classification_bert_complete_desc_unit
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd hybrid_t5_pattern_desc_unit
|
||||
micromamba run -n hug accelerate launch train_encoder.py
|
||||
micromamba run -n hug accelerate launch train_decoder.py
|
||||
cd ..
|
||||
|
||||
cd classification_bert_complete_desc_unit_name
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd ..
|
||||
|
||||
# cd classification_bert_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd classification_bert_complete_desc_unit
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd classification_bert_complete_desc_unit_name
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd mapping_t5_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
|
|
Loading…
Reference in New Issue