Compare commits
No commits in common. "086b867d917b4b46f2a00d93c619c954df350d72" and "c5760d127de6cac0f92713476f9f13d1ab6083d9" have entirely different histories.
086b867d91
...
c5760d127d
|
@ -10,12 +10,6 @@ mdm_list = sorted(list((set(full_df['pattern']))))
|
||||||
# %%
|
# %%
|
||||||
full_df
|
full_df
|
||||||
|
|
||||||
# %%
|
|
||||||
mdm_list
|
|
||||||
|
|
||||||
# %%
|
|
||||||
mask = full_df['pattern'] == 'GE#Flow FGMassFlow'
|
|
||||||
full_df[mask]
|
|
||||||
# %%
|
# %%
|
||||||
mask1 = full_df['thing'] == 'ME1TurboCharger1'
|
mask1 = full_df['thing'] == 'ME1TurboCharger1'
|
||||||
mask2 = full_df['property'] == 'LOInletPress'
|
mask2 = full_df['property'] == 'LOInletPress'
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
This section is to evaluate the combined (relevant-class prediction) and
|
|
||||||
(mapping prediction) to evaluate the final correct mapping accuracy.
|
|
|
@ -1,34 +0,0 @@
|
||||||
# %%
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# following code computes final mapping + classification accuracy
|
|
||||||
# %%
|
|
||||||
def run(fold):
|
|
||||||
data_path = f'../relevant_class/binary_classifier_desc_unit/classification_prediction/exports/result_group_{fold}.csv'
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
p_mdm = df['p_mdm']
|
|
||||||
|
|
||||||
# data_path = f'../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
|
||||||
data_path = f'../train/modified_t5_decoder_4_layers/mapping_prediction/exports/result_group_{fold}.csv'
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
actual_mdm = df['MDM']
|
|
||||||
|
|
||||||
thing_correctness = df['thing'] == df['p_thing']
|
|
||||||
property_correctness = df['property'] == df['p_property']
|
|
||||||
answer = thing_correctness & property_correctness
|
|
||||||
|
|
||||||
# if is non-MDM -> then should be unmapped
|
|
||||||
# if is MDM -> then should be mapped correctly
|
|
||||||
|
|
||||||
# out of correctly predicted relevant data, how many are mapped correctly?
|
|
||||||
correct_positive_mdm_and_map = sum(p_mdm & actual_mdm & answer)
|
|
||||||
|
|
||||||
# number of correctly predicted non-relevant data
|
|
||||||
correct_negative_mdm = sum(~(p_mdm) & ~(actual_mdm))
|
|
||||||
|
|
||||||
overall_correct = (correct_positive_mdm_and_map + correct_negative_mdm)/len(actual_mdm)
|
|
||||||
print(overall_correct)
|
|
||||||
# %%
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
run(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
exports
|
|
||||||
output.txt
|
|
|
@ -1,235 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
BATCH_SIZE = 256
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
# processes dataframe into lists of dictionaries
|
|
||||||
# each element maps input to output
|
|
||||||
# input: tag_description
|
|
||||||
# output: class label
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
in_mdm_label = int(row['MDM'])
|
|
||||||
element = {
|
|
||||||
'text' : f"{desc}{unit}",
|
|
||||||
'label': in_mdm_label,
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_dataset(fold):
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
|
||||||
|
|
||||||
return test_dataset
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def test(fold):
|
|
||||||
|
|
||||||
test_dataset = create_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
|
|
||||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute max token length
|
|
||||||
max_length = 0
|
|
||||||
for sample in test_dataset['text']:
|
|
||||||
# Tokenize the sample and get the length
|
|
||||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
|
||||||
length = len(input_ids)
|
|
||||||
|
|
||||||
# Update max_length if this sample is longer
|
|
||||||
if length > max_length:
|
|
||||||
max_length = length
|
|
||||||
|
|
||||||
print(max_length)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
max_length = 128
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['text']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
max_length=max_length,
|
|
||||||
# truncation=True,
|
|
||||||
padding='max_length'
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns="text",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
|
||||||
|
|
||||||
# %% temp
|
|
||||||
# tokenized_datasets['train'].rename_columns()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create data collator
|
|
||||||
|
|
||||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute metrics
|
|
||||||
# metric = evaluate.load("accuracy")
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def compute_metrics(eval_preds):
|
|
||||||
# preds, labels = eval_preds
|
|
||||||
# preds = np.argmax(preds, axis=1)
|
|
||||||
# return metric.compute(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(
|
|
||||||
model_checkpoint,
|
|
||||||
num_labels=2)
|
|
||||||
# important! after extending tokens vocab
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
model = model.eval()
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
pred_labels = []
|
|
||||||
actual_labels = []
|
|
||||||
|
|
||||||
|
|
||||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
|
||||||
for batch in tqdm(dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
actual_labels.extend(batch['label'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
logits = model(
|
|
||||||
input_ids,
|
|
||||||
attention_mask).logits
|
|
||||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
|
||||||
pred_labels.extend(predicted_class_ids)
|
|
||||||
|
|
||||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
|
||||||
pred_labels = np.array(pred_labels, dtype=bool)
|
|
||||||
|
|
||||||
# append the mdm prediction to the test_df for analysis later
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_mdm': pred_labels,
|
|
||||||
})
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df_export = pd.concat([test_df, df_out], axis=1)
|
|
||||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
|
||||||
y_true = actual_labels
|
|
||||||
y_pred = pred_labels
|
|
||||||
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
cm = confusion_matrix(y_true, y_pred)
|
|
||||||
tn, fp, fn, tp = cm.ravel()
|
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
|
|
||||||
|
|
||||||
print('*' * 80, file=f)
|
|
||||||
print(f'Fold: {fold}', file=f)
|
|
||||||
# Print the results
|
|
||||||
print(f"tp: {tp}", file=f)
|
|
||||||
print(f"tn: {tn}", file=f)
|
|
||||||
print(f"fp: {fp}", file=f)
|
|
||||||
print(f"fn: {fn}", file=f)
|
|
||||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
|
||||||
print(f'F1 Score: {f1:.5f}', file=f)
|
|
||||||
print(f'Precision: {precision:.5f}', file=f)
|
|
||||||
print(f'Recall: {recall:.5f}', file=f)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
test(fold)
|
|
|
@ -1,218 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
Trainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
TrainingArguments
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# we need to create the mdm_list
|
|
||||||
# import the full mdm-only file
|
|
||||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
|
||||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# rather than use pattern, we use the real thing and property
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
id2label = {0: False, 1: True}
|
|
||||||
label2id = {False: 0, True: 1}
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
# processes dataframe into lists of dictionaries
|
|
||||||
# each element maps input to output
|
|
||||||
# input: tag_description
|
|
||||||
# output: class label
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
in_mdm_label = int(row['MDM'])
|
|
||||||
element = {
|
|
||||||
'text' : f"{desc}",
|
|
||||||
'label': in_mdm_label,
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
|
|
||||||
# reconstruct full training data with non-mdm data
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
ships_list = list(set(test_df['ships_idx']))
|
|
||||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
|
||||||
|
|
||||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
|
||||||
|
|
||||||
train_ships_set = set(train_ships_list)
|
|
||||||
test_ships_set = set(ships_list)
|
|
||||||
|
|
||||||
# assertion for non data leakage
|
|
||||||
assert not set(train_ships_set).intersection(test_ships_set)
|
|
||||||
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
|
|
||||||
save_path = f'checkpoint_fold_{fold}'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
|
|
||||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
|
||||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['text']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding=True
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns="text",
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% temp
|
|
||||||
# tokenized_datasets['train'].rename_columns()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create data collator
|
|
||||||
|
|
||||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute metrics
|
|
||||||
metric = evaluate.load("accuracy")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
preds = np.argmax(preds, axis=1)
|
|
||||||
return metric.compute(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create id2label and label2id
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(
|
|
||||||
model_checkpoint,
|
|
||||||
num_labels=2)
|
|
||||||
# important! after extending tokens vocab
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir=f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-5,
|
|
||||||
per_device_train_batch_size=128,
|
|
||||||
per_device_eval_batch_size=128,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=80,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Trainer(
|
|
||||||
model,
|
|
||||||
training_args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
data_collator=data_collator,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
exports
|
|
||||||
output.txt
|
|
|
@ -1,235 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
BATCH_SIZE = 256
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
# processes dataframe into lists of dictionaries
|
|
||||||
# each element maps input to output
|
|
||||||
# input: tag_description
|
|
||||||
# output: class label
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
in_mdm_label = int(row['MDM'])
|
|
||||||
element = {
|
|
||||||
'text' : f"{desc}{unit}",
|
|
||||||
'label': in_mdm_label,
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_dataset(fold):
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
|
||||||
|
|
||||||
return test_dataset
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def test(fold):
|
|
||||||
|
|
||||||
test_dataset = create_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
|
|
||||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute max token length
|
|
||||||
max_length = 0
|
|
||||||
for sample in test_dataset['text']:
|
|
||||||
# Tokenize the sample and get the length
|
|
||||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
|
||||||
length = len(input_ids)
|
|
||||||
|
|
||||||
# Update max_length if this sample is longer
|
|
||||||
if length > max_length:
|
|
||||||
max_length = length
|
|
||||||
|
|
||||||
print(max_length)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
max_length = 128
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['text']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
max_length=max_length,
|
|
||||||
# truncation=True,
|
|
||||||
padding='max_length'
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns="text",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
|
||||||
|
|
||||||
# %% temp
|
|
||||||
# tokenized_datasets['train'].rename_columns()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create data collator
|
|
||||||
|
|
||||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute metrics
|
|
||||||
# metric = evaluate.load("accuracy")
|
|
||||||
#
|
|
||||||
#
|
|
||||||
# def compute_metrics(eval_preds):
|
|
||||||
# preds, labels = eval_preds
|
|
||||||
# preds = np.argmax(preds, axis=1)
|
|
||||||
# return metric.compute(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(
|
|
||||||
model_checkpoint,
|
|
||||||
num_labels=2)
|
|
||||||
# important! after extending tokens vocab
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
model = model.eval()
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
model.to(device)
|
|
||||||
|
|
||||||
pred_labels = []
|
|
||||||
actual_labels = []
|
|
||||||
|
|
||||||
|
|
||||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
|
||||||
for batch in tqdm(dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
actual_labels.extend(batch['label'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
logits = model(
|
|
||||||
input_ids,
|
|
||||||
attention_mask).logits
|
|
||||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
|
||||||
pred_labels.extend(predicted_class_ids)
|
|
||||||
|
|
||||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
|
||||||
pred_labels = np.array(pred_labels, dtype=bool)
|
|
||||||
|
|
||||||
# append the mdm prediction to the test_df for analysis later
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_mdm': pred_labels,
|
|
||||||
})
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df_export = pd.concat([test_df, df_out], axis=1)
|
|
||||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
|
||||||
y_true = actual_labels
|
|
||||||
y_pred = pred_labels
|
|
||||||
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
cm = confusion_matrix(y_true, y_pred)
|
|
||||||
tn, fp, fn, tp = cm.ravel()
|
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
|
|
||||||
|
|
||||||
print('*' * 80, file=f)
|
|
||||||
print(f'Fold: {fold}', file=f)
|
|
||||||
# Print the results
|
|
||||||
print(f"tp: {tp}", file=f)
|
|
||||||
print(f"tn: {tn}", file=f)
|
|
||||||
print(f"fp: {fp}", file=f)
|
|
||||||
print(f"fn: {fn}", file=f)
|
|
||||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
|
||||||
print(f'F1 Score: {f1:.5f}', file=f)
|
|
||||||
print(f'Precision: {precision:.5f}', file=f)
|
|
||||||
print(f'Recall: {recall:.5f}', file=f)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
test(fold)
|
|
|
@ -1,219 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
Trainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
TrainingArguments
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# we need to create the mdm_list
|
|
||||||
# import the full mdm-only file
|
|
||||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
|
||||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# rather than use pattern, we use the real thing and property
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
id2label = {0: False, 1: True}
|
|
||||||
label2id = {False: 0, True: 1}
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
# processes dataframe into lists of dictionaries
|
|
||||||
# each element maps input to output
|
|
||||||
# input: tag_description
|
|
||||||
# output: class label
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
in_mdm_label = int(row['MDM'])
|
|
||||||
element = {
|
|
||||||
'text' : f"{desc}{unit}",
|
|
||||||
'label': in_mdm_label,
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
|
|
||||||
# reconstruct full training data with non-mdm data
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
ships_list = list(set(test_df['ships_idx']))
|
|
||||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
|
||||||
|
|
||||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
|
||||||
|
|
||||||
train_ships_set = set(train_ships_list)
|
|
||||||
test_ships_set = set(ships_list)
|
|
||||||
|
|
||||||
# assertion for non data leakage
|
|
||||||
assert not set(train_ships_set).intersection(test_ships_set)
|
|
||||||
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
|
|
||||||
save_path = f'checkpoint_fold_{fold}'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
|
|
||||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
|
||||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['text']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding=True
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns="text",
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% temp
|
|
||||||
# tokenized_datasets['train'].rename_columns()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create data collator
|
|
||||||
|
|
||||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute metrics
|
|
||||||
metric = evaluate.load("accuracy")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
preds = np.argmax(preds, axis=1)
|
|
||||||
return metric.compute(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create id2label and label2id
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(
|
|
||||||
model_checkpoint,
|
|
||||||
num_labels=2)
|
|
||||||
# important! after extending tokens vocab
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir=f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-5,
|
|
||||||
per_device_train_batch_size=128,
|
|
||||||
per_device_eval_batch_size=128,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=80,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Trainer(
|
|
||||||
model,
|
|
||||||
training_args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
data_collator=data_collator,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
|
@ -1,3 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports
|
|
||||||
output.txt
|
|
|
@ -1,4 +0,0 @@
|
||||||
# one-class classification by similarity
|
|
||||||
|
|
||||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
|
||||||
to MDM
|
|
|
@ -1,175 +0,0 @@
|
||||||
# %%
|
|
||||||
import pandas as pd
|
|
||||||
from utils import Retriever, cosine_similarity_chunked
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
import numpy as np
|
|
||||||
from tqdm import tqdm
|
|
||||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
|
||||||
|
|
||||||
##################################################
|
|
||||||
# helper functions
|
|
||||||
|
|
||||||
|
|
||||||
# the following function takes in a full cos_sim_matrix
|
|
||||||
# condition_source: boolean selectors of the source embedding
|
|
||||||
# condition_target: boolean selectors of the target embedding
|
|
||||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
|
||||||
# subset_matrix = cos_sim_matrix[condition_source]
|
|
||||||
# except we are subsetting 2D matrix (row, column)
|
|
||||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
|
||||||
# we select top k here
|
|
||||||
# Get the indices of the top k maximum values along axis 1
|
|
||||||
top_k = 3
|
|
||||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
|
||||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
|
||||||
# the result is flipped
|
|
||||||
top_k_indices[0] = top_k_indices[0][::-1]
|
|
||||||
|
|
||||||
# Get the values of the top 5 maximum scores
|
|
||||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
|
||||||
|
|
||||||
|
|
||||||
return top_k_indices, top_k_values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Embedder():
|
|
||||||
input_df: pd.DataFrame
|
|
||||||
fold: int
|
|
||||||
|
|
||||||
def __init__(self, input_df):
|
|
||||||
self.input_df = input_df
|
|
||||||
|
|
||||||
|
|
||||||
def make_embedding(self, checkpoint_path):
|
|
||||||
|
|
||||||
def generate_input_list(df):
|
|
||||||
input_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
element = f"{desc}"
|
|
||||||
input_list.append(element)
|
|
||||||
return input_list
|
|
||||||
|
|
||||||
# prepare reference embed
|
|
||||||
train_data = list(generate_input_list(self.input_df))
|
|
||||||
# Define the directory and the pattern
|
|
||||||
retriever_train = Retriever(train_data, checkpoint_path)
|
|
||||||
retriever_train.make_embedding(batch_size=64)
|
|
||||||
return retriever_train.embeddings.to('cpu')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def run_similarity_classifier(fold):
|
|
||||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
checkpoint_directory = "../../train/classification_bert_complete_desc"
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
train_embedder = Embedder(input_df=train_df)
|
|
||||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
test_embedder = Embedder(input_df=test_df)
|
|
||||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
def compute_top_k(select_idx):
|
|
||||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
|
||||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
|
||||||
|
|
||||||
_, top_k_values = find_closest(
|
|
||||||
cos_sim_matrix=cos_sim_matrix,
|
|
||||||
condition_source=condition_source,
|
|
||||||
condition_target=condition_target)
|
|
||||||
|
|
||||||
return top_k_values[0][0]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# test embeds are inputs since we are looking back at train data
|
|
||||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
|
||||||
|
|
||||||
|
|
||||||
sim_list = []
|
|
||||||
for select_idx in tqdm(test_df.index):
|
|
||||||
top_sim_value = compute_top_k(select_idx)
|
|
||||||
sim_list.append(top_sim_value)
|
|
||||||
|
|
||||||
# analysis 1: using threshold to perform find-back prediction success
|
|
||||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
|
||||||
best_threshold = 0
|
|
||||||
best_f1 = 0
|
|
||||||
for threshold in threshold_values:
|
|
||||||
predict_list = [ elem > threshold for elem in sim_list ]
|
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
|
||||||
y_pred = predict_list
|
|
||||||
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
if f1 > best_f1:
|
|
||||||
best_threshold = threshold
|
|
||||||
best_f1 = f1
|
|
||||||
|
|
||||||
# OR just manually set best_threshold
|
|
||||||
# best_threshold = 0.90
|
|
||||||
|
|
||||||
# compute metrics again with best threshold
|
|
||||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
|
||||||
|
|
||||||
# save
|
|
||||||
pred_labels = np.array(predict_list, dtype=bool)
|
|
||||||
|
|
||||||
# append the mdm prediction to the test_df for analysis later
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_mdm': pred_labels,
|
|
||||||
})
|
|
||||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
|
||||||
y_pred = predict_list
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
|
|
||||||
print(f'Fold: {fold}', file=f)
|
|
||||||
print(f'Best threshold: {best_threshold}', file=f)
|
|
||||||
# Print the results
|
|
||||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
|
||||||
print(f'F1 Score: {f1:.5f}', file=f)
|
|
||||||
print(f'Precision: {precision:.5f}', file=f)
|
|
||||||
print(f'Recall: {recall:.5f}', file=f)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
run_similarity_classifier(fold)
|
|
|
@ -1,81 +0,0 @@
|
||||||
import torch
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
)
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Retriever:
|
|
||||||
def __init__(self, input_texts, model_checkpoint):
|
|
||||||
# we need to generate the embedding from list of input strings
|
|
||||||
self.embeddings = []
|
|
||||||
self.inputs = input_texts
|
|
||||||
model_checkpoint = model_checkpoint
|
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
# device = "cpu"
|
|
||||||
model.to(self.device)
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
def make_embedding(self, batch_size=64):
|
|
||||||
all_embeddings = self.embeddings
|
|
||||||
input_texts = self.inputs
|
|
||||||
|
|
||||||
for i in range(0, len(input_texts), batch_size):
|
|
||||||
batch_texts = input_texts[i:i+batch_size]
|
|
||||||
# Tokenize the input text
|
|
||||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
|
||||||
input_ids = inputs.input_ids.to(self.device)
|
|
||||||
attention_mask = inputs.attention_mask.to(self.device)
|
|
||||||
|
|
||||||
|
|
||||||
# Pass the input through the encoder and retrieve the embeddings
|
|
||||||
with torch.no_grad():
|
|
||||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
|
||||||
# get last layer
|
|
||||||
embeddings = encoder_outputs.hidden_states[-1]
|
|
||||||
# get cls token embedding
|
|
||||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
|
||||||
all_embeddings.append(cls_embeddings)
|
|
||||||
|
|
||||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
|
||||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
|
||||||
|
|
||||||
self.embeddings = all_embeddings
|
|
||||||
|
|
||||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
|
||||||
device = 'cuda'
|
|
||||||
batch1_size = batch1.size(0)
|
|
||||||
batch2_size = batch2.size(0)
|
|
||||||
batch2.to(device)
|
|
||||||
|
|
||||||
# Prepare an empty tensor to store results
|
|
||||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
|
||||||
|
|
||||||
# Process batch1 in chunks
|
|
||||||
for i in range(0, batch1_size, chunk_size):
|
|
||||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
|
||||||
|
|
||||||
batch1_chunk.to(device)
|
|
||||||
# Expand batch1 chunk and entire batch2 for comparison
|
|
||||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
|
||||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
|
||||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
|
||||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
|
||||||
|
|
||||||
# Compute cosine similarity by matrix multiplication and normalizing
|
|
||||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
|
||||||
|
|
||||||
# Store the results in the appropriate part of the final tensor
|
|
||||||
cos_sim[i:i + chunk_size] = sim_chunk
|
|
||||||
|
|
||||||
return cos_sim
|
|
|
@ -1,3 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports
|
|
||||||
output.txt
|
|
|
@ -1,4 +0,0 @@
|
||||||
# one-class classification by similarity
|
|
||||||
|
|
||||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
|
||||||
to MDM
|
|
|
@ -1,176 +0,0 @@
|
||||||
# %%
|
|
||||||
import pandas as pd
|
|
||||||
from utils import Retriever, cosine_similarity_chunked
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
import numpy as np
|
|
||||||
from tqdm import tqdm
|
|
||||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
|
||||||
|
|
||||||
##################################################
|
|
||||||
# helper functions
|
|
||||||
|
|
||||||
|
|
||||||
# the following function takes in a full cos_sim_matrix
|
|
||||||
# condition_source: boolean selectors of the source embedding
|
|
||||||
# condition_target: boolean selectors of the target embedding
|
|
||||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
|
||||||
# subset_matrix = cos_sim_matrix[condition_source]
|
|
||||||
# except we are subsetting 2D matrix (row, column)
|
|
||||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
|
||||||
# we select top k here
|
|
||||||
# Get the indices of the top k maximum values along axis 1
|
|
||||||
top_k = 3
|
|
||||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
|
||||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
|
||||||
# the result is flipped
|
|
||||||
top_k_indices[0] = top_k_indices[0][::-1]
|
|
||||||
|
|
||||||
# Get the values of the top 5 maximum scores
|
|
||||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
|
||||||
|
|
||||||
|
|
||||||
return top_k_indices, top_k_values
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Embedder():
|
|
||||||
input_df: pd.DataFrame
|
|
||||||
fold: int
|
|
||||||
|
|
||||||
def __init__(self, input_df):
|
|
||||||
self.input_df = input_df
|
|
||||||
|
|
||||||
|
|
||||||
def make_embedding(self, checkpoint_path):
|
|
||||||
|
|
||||||
def generate_input_list(df):
|
|
||||||
input_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = f"{desc}{unit}"
|
|
||||||
input_list.append(element)
|
|
||||||
return input_list
|
|
||||||
|
|
||||||
# prepare reference embed
|
|
||||||
train_data = list(generate_input_list(self.input_df))
|
|
||||||
# Define the directory and the pattern
|
|
||||||
retriever_train = Retriever(train_data, checkpoint_path)
|
|
||||||
retriever_train.make_embedding(batch_size=64)
|
|
||||||
return retriever_train.embeddings.to('cpu')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def run_similarity_classifier(fold):
|
|
||||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
|
||||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
train_embedder = Embedder(input_df=train_df)
|
|
||||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
test_embedder = Embedder(input_df=test_df)
|
|
||||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
def compute_top_k(select_idx):
|
|
||||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
|
||||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
|
||||||
|
|
||||||
_, top_k_values = find_closest(
|
|
||||||
cos_sim_matrix=cos_sim_matrix,
|
|
||||||
condition_source=condition_source,
|
|
||||||
condition_target=condition_target)
|
|
||||||
|
|
||||||
return top_k_values[0][0]
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# test embeds are inputs since we are looking back at train data
|
|
||||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
|
||||||
|
|
||||||
|
|
||||||
sim_list = []
|
|
||||||
for select_idx in tqdm(test_df.index):
|
|
||||||
top_sim_value = compute_top_k(select_idx)
|
|
||||||
sim_list.append(top_sim_value)
|
|
||||||
|
|
||||||
# analysis 1: using threshold to perform find-back prediction success
|
|
||||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
|
||||||
best_threshold = 0
|
|
||||||
best_f1 = 0
|
|
||||||
for threshold in threshold_values:
|
|
||||||
predict_list = [ elem > threshold for elem in sim_list ]
|
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
|
||||||
y_pred = predict_list
|
|
||||||
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
if f1 > best_f1:
|
|
||||||
best_threshold = threshold
|
|
||||||
best_f1 = f1
|
|
||||||
|
|
||||||
# just manually set best_threshold
|
|
||||||
# best_threshold = 0.90
|
|
||||||
|
|
||||||
# compute metrics again with best threshold
|
|
||||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
|
||||||
|
|
||||||
# save
|
|
||||||
pred_labels = np.array(predict_list, dtype=bool)
|
|
||||||
|
|
||||||
# append the mdm prediction to the test_df for analysis later
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_mdm': pred_labels,
|
|
||||||
})
|
|
||||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
|
||||||
y_pred = predict_list
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
f1 = f1_score(y_true, y_pred)
|
|
||||||
precision = precision_score(y_true, y_pred)
|
|
||||||
recall = recall_score(y_true, y_pred)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
|
|
||||||
print(f'Fold: {fold}', file=f)
|
|
||||||
print(f'Best threshold: {best_threshold}', file=f)
|
|
||||||
# Print the results
|
|
||||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
|
||||||
print(f'F1 Score: {f1:.5f}', file=f)
|
|
||||||
print(f'Precision: {precision:.5f}', file=f)
|
|
||||||
print(f'Recall: {recall:.5f}', file=f)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
run_similarity_classifier(fold)
|
|
|
@ -1,81 +0,0 @@
|
||||||
import torch
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
)
|
|
||||||
import torch.nn.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Retriever:
|
|
||||||
def __init__(self, input_texts, model_checkpoint):
|
|
||||||
# we need to generate the embedding from list of input strings
|
|
||||||
self.embeddings = []
|
|
||||||
self.inputs = input_texts
|
|
||||||
model_checkpoint = model_checkpoint
|
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
|
|
||||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
|
||||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
# device = "cpu"
|
|
||||||
model.to(self.device)
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
def make_embedding(self, batch_size=64):
|
|
||||||
all_embeddings = self.embeddings
|
|
||||||
input_texts = self.inputs
|
|
||||||
|
|
||||||
for i in range(0, len(input_texts), batch_size):
|
|
||||||
batch_texts = input_texts[i:i+batch_size]
|
|
||||||
# Tokenize the input text
|
|
||||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
|
||||||
input_ids = inputs.input_ids.to(self.device)
|
|
||||||
attention_mask = inputs.attention_mask.to(self.device)
|
|
||||||
|
|
||||||
|
|
||||||
# Pass the input through the encoder and retrieve the embeddings
|
|
||||||
with torch.no_grad():
|
|
||||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
|
||||||
# get last layer
|
|
||||||
embeddings = encoder_outputs.hidden_states[-1]
|
|
||||||
# get cls token embedding
|
|
||||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
|
||||||
all_embeddings.append(cls_embeddings)
|
|
||||||
|
|
||||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
|
||||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
|
||||||
|
|
||||||
self.embeddings = all_embeddings
|
|
||||||
|
|
||||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
|
||||||
device = 'cuda'
|
|
||||||
batch1_size = batch1.size(0)
|
|
||||||
batch2_size = batch2.size(0)
|
|
||||||
batch2.to(device)
|
|
||||||
|
|
||||||
# Prepare an empty tensor to store results
|
|
||||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
|
||||||
|
|
||||||
# Process batch1 in chunks
|
|
||||||
for i in range(0, batch1_size, chunk_size):
|
|
||||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
|
||||||
|
|
||||||
batch1_chunk.to(device)
|
|
||||||
# Expand batch1 chunk and entire batch2 for comparison
|
|
||||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
|
||||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
|
||||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
|
||||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
|
||||||
|
|
||||||
# Compute cosine similarity by matrix multiplication and normalizing
|
|
||||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
|
||||||
|
|
||||||
# Store the results in the appropriate part of the final tensor
|
|
||||||
cos_sim[i:i + chunk_size] = sim_chunk
|
|
||||||
|
|
||||||
return cos_sim
|
|
|
@ -176,9 +176,9 @@ def train(fold):
|
||||||
logging_strategy="epoch",
|
logging_strategy="epoch",
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-3,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
|
|
@ -178,8 +178,8 @@ def train(fold):
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-5,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1 +0,0 @@
|
||||||
__pycache__
|
|
|
@ -1,125 +0,0 @@
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.utils.checkpoint
|
|
||||||
from torch import nn
|
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
||||||
|
|
||||||
from transformers import (
|
|
||||||
T5PreTrainedModel,
|
|
||||||
T5Model
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
from transformers.modeling_outputs import (
|
|
||||||
SequenceClassifierOutput,
|
|
||||||
)
|
|
||||||
|
|
||||||
def mean_pooling(encoder_outputs, attention_mask):
|
|
||||||
"""
|
|
||||||
Perform mean pooling over encoder outputs, considering the attention mask.
|
|
||||||
"""
|
|
||||||
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
|
|
||||||
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
|
|
||||||
masked_hidden_states = hidden_states * mask # Zero out padding tokens
|
|
||||||
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
|
|
||||||
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
|
|
||||||
return sum_hidden_states / sum_mask # Mean pooling
|
|
||||||
|
|
||||||
|
|
||||||
class T5EncoderForSequenceClassification(T5PreTrainedModel):
|
|
||||||
|
|
||||||
def __init__(self, checkpoint, tokenizer, config, num_labels):
|
|
||||||
super().__init__(config)
|
|
||||||
self.num_labels = num_labels
|
|
||||||
self.config = config
|
|
||||||
|
|
||||||
# we force the loading of a pre-trained model here
|
|
||||||
self.t5 = T5Model.from_pretrained(checkpoint)
|
|
||||||
self.t5.resize_token_embeddings(len(tokenizer))
|
|
||||||
classifier_dropout = (
|
|
||||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
|
||||||
)
|
|
||||||
self.dropout = nn.Dropout(classifier_dropout)
|
|
||||||
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
|
||||||
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
token_type_ids: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.Tensor] = None,
|
|
||||||
head_mask: Optional[torch.Tensor] = None,
|
|
||||||
inputs_embeds: Optional[torch.Tensor] = None,
|
|
||||||
labels: Optional[torch.Tensor] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
|
||||||
r"""
|
|
||||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
||||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
||||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
||||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
||||||
"""
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
|
|
||||||
# encoder_outputs = self.t5.encoder(
|
|
||||||
# input_ids,
|
|
||||||
# attention_mask=attention_mask,
|
|
||||||
# head_mask=head_mask,
|
|
||||||
# inputs_embeds=inputs_embeds,
|
|
||||||
# output_attentions=output_attentions,
|
|
||||||
# output_hidden_states=output_hidden_states,
|
|
||||||
# return_dict=return_dict,
|
|
||||||
# )
|
|
||||||
|
|
||||||
|
|
||||||
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
|
|
||||||
# last_hidden_state = encoder_outputs.last_hidden_state
|
|
||||||
# use mean of hidden state
|
|
||||||
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
|
|
||||||
|
|
||||||
# Use the hidden state of the first token as the sequence representation
|
|
||||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
|
||||||
|
|
||||||
# pooled_output = encoder_outputs[1]
|
|
||||||
|
|
||||||
pooled_output = self.dropout(pooled_output)
|
|
||||||
logits = self.classifier(pooled_output)
|
|
||||||
|
|
||||||
loss = None
|
|
||||||
if labels is not None:
|
|
||||||
if self.config.problem_type is None:
|
|
||||||
if self.num_labels == 1:
|
|
||||||
self.config.problem_type = "regression"
|
|
||||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
||||||
self.config.problem_type = "single_label_classification"
|
|
||||||
else:
|
|
||||||
self.config.problem_type = "multi_label_classification"
|
|
||||||
|
|
||||||
if self.config.problem_type == "regression":
|
|
||||||
loss_fct = MSELoss()
|
|
||||||
if self.num_labels == 1:
|
|
||||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
||||||
else:
|
|
||||||
loss = loss_fct(logits, labels)
|
|
||||||
elif self.config.problem_type == "single_label_classification":
|
|
||||||
loss_fct = CrossEntropyLoss()
|
|
||||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
||||||
elif self.config.problem_type == "multi_label_classification":
|
|
||||||
loss_fct = BCEWithLogitsLoss()
|
|
||||||
loss = loss_fct(logits, labels)
|
|
||||||
if not return_dict:
|
|
||||||
output = (logits,) + encoder_outputs[2:]
|
|
||||||
return ((loss,) + output) if loss is not None else output
|
|
||||||
|
|
||||||
return SequenceClassifierOutput(
|
|
||||||
loss=loss,
|
|
||||||
logits=logits,
|
|
||||||
hidden_states=encoder_outputs.hidden_states,
|
|
||||||
attentions=encoder_outputs.attentions,
|
|
||||||
)
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.0
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,236 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# Filter out weights related to the classification head
|
|
||||||
# given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
|
||||||
|
|
||||||
# for key, param in model.state_dict().items():
|
|
||||||
# if key in t5_weights:
|
|
||||||
# print(f"{key}: Successfully overridden")
|
|
||||||
# else:
|
|
||||||
# print(f"{key}: Retained original weights")
|
|
||||||
|
|
||||||
|
|
||||||
# Freeze the decoder
|
|
||||||
for param in model.decoder.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
# Freeze the shared embedding layer
|
|
||||||
for param in model.shared.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9342167534311405
|
|
||||||
Accuracy for fold 2: 0.883177570093458
|
|
||||||
Accuracy for fold 3: 0.963855421686747
|
|
||||||
Accuracy for fold 4: 0.9705042816365367
|
|
||||||
Accuracy for fold 5: 0.9051763628034815
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,235 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
|
||||||
|
|
||||||
# for key, param in model.state_dict().items():
|
|
||||||
# if key in t5_weights:
|
|
||||||
# print(f"{key}: Successfully overridden")
|
|
||||||
# else:
|
|
||||||
# print(f"{key}: Retained original weights")
|
|
||||||
|
|
||||||
|
|
||||||
# Freeze the encoder
|
|
||||||
for param in model.encoder.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
# Freeze the shared embedding layer
|
|
||||||
for param in model.shared.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9242782773308093
|
Accuracy for fold 1: 0.9427354472314246
|
||||||
Accuracy for fold 2: 0.9126168224299065
|
Accuracy for fold 2: 0.8859813084112149
|
||||||
Accuracy for fold 3: 0.9643574297188755
|
Accuracy for fold 3: 0.9683734939759037
|
||||||
Accuracy for fold 4: 0.9595623215984777
|
Accuracy for fold 4: 0.9762131303520457
|
||||||
Accuracy for fold 5: 0.8950984883188273
|
Accuracy for fold 5: 0.907924874026569
|
||||||
|
|
|
@ -13,7 +13,6 @@ def infer_and_select(fold):
|
||||||
# import test data
|
# import test data
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
# get target data
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
|
|
@ -120,22 +120,13 @@ def train(fold):
|
||||||
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
||||||
checkpoint = load_file(checkpoint_path)
|
checkpoint = load_file(checkpoint_path)
|
||||||
# Filter out weights related to the classification head
|
# Filter out weights related to the classification head
|
||||||
# given name format: t5.encoder.embed_tokens.weight
|
t5_weights = {key: value for key, value in checkpoint.items() if "classifier" not in key}
|
||||||
# we want: encoder.embed.tokens.weight
|
|
||||||
t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
model.load_state_dict(state_dict=t5_weights, strict=False)
|
model.load_state_dict(state_dict=t5_weights, strict=False)
|
||||||
|
# important! after extending tokens vocab
|
||||||
for key, param in model.state_dict().items():
|
model.resize_token_embeddings(len(tokenizer))
|
||||||
if key in t5_weights:
|
|
||||||
print(f"{key}: Successfully overridden")
|
|
||||||
else:
|
|
||||||
print(f"{key}: Retained original weights")
|
|
||||||
|
|
||||||
|
|
||||||
# Freeze the encoder
|
# Freeze the encoder
|
||||||
for param in model.encoder.parameters():
|
for param in model.encoder.parameters():
|
||||||
|
@ -203,7 +194,7 @@ def train(fold):
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
save_total_limit=1,
|
save_total_limit=1,
|
||||||
num_train_epochs=40,
|
num_train_epochs=80,
|
||||||
predict_with_generate=True,
|
predict_with_generate=True,
|
||||||
bf16=True,
|
bf16=True,
|
||||||
push_to_hub=False,
|
push_to_hub=False,
|
||||||
|
|
|
@ -35,13 +35,12 @@ torch.set_float32_matmul_precision('high')
|
||||||
# import the full mdm-only file
|
# import the full mdm-only file
|
||||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
# mdm_list = sorted(list((set(full_df['pattern']))))
|
mdm_list = sorted(list((set(full_df['pattern']))))
|
||||||
|
|
||||||
# # rather than use pattern, we use the real thing and property
|
# # rather than use pattern, we use the real thing and property
|
||||||
thing_property = full_df['thing'] + full_df['property']
|
# thing_property = full_df['thing'] + full_df['property']
|
||||||
thing_property = thing_property.to_list()
|
# thing_property = thing_property.to_list()
|
||||||
mdm_list = sorted(list(set(thing_property)))
|
# mdm_list = sorted(list(set(thing_property)))
|
||||||
print("number of classes: ", len(mdm_list))
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -63,8 +62,8 @@ def process_df_to_dict(df, mdm_list):
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
pattern = f"{row['thing'] + row['property']}"
|
# pattern = f"{row['thing'] + row['property']}"
|
||||||
# pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
||||||
try:
|
try:
|
||||||
index = mdm_list.index(pattern)
|
index = mdm_list.index(pattern)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
|
@ -138,7 +137,7 @@ def train(fold):
|
||||||
remove_columns="text",
|
remove_columns="text",
|
||||||
)
|
)
|
||||||
|
|
||||||
# %% temp # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
# %% temp
|
||||||
# tokenized_datasets['train'].rename_columns()
|
# tokenized_datasets['train'].rename_columns()
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -190,10 +189,10 @@ def train(fold):
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-3,
|
learning_rate=1e-3,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False, # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
save_total_limit=1,
|
save_total_limit=1,
|
||||||
num_train_epochs=80,
|
num_train_epochs=80,
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1 +0,0 @@
|
||||||
__pycache__
|
|
|
@ -1,125 +0,0 @@
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import torch
|
|
||||||
import torch.utils.checkpoint
|
|
||||||
from torch import nn
|
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
||||||
|
|
||||||
from transformers import (
|
|
||||||
T5PreTrainedModel,
|
|
||||||
T5Model
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
from transformers.modeling_outputs import (
|
|
||||||
SequenceClassifierOutput,
|
|
||||||
)
|
|
||||||
|
|
||||||
def mean_pooling(encoder_outputs, attention_mask):
|
|
||||||
"""
|
|
||||||
Perform mean pooling over encoder outputs, considering the attention mask.
|
|
||||||
"""
|
|
||||||
hidden_states = encoder_outputs.last_hidden_state # Shape: (batch_size, seq_length, hidden_size)
|
|
||||||
mask = attention_mask.unsqueeze(-1) # Shape: (batch_size, seq_length, 1)
|
|
||||||
masked_hidden_states = hidden_states * mask # Zero out padding tokens
|
|
||||||
sum_hidden_states = masked_hidden_states.sum(dim=1) # Sum over sequence length
|
|
||||||
sum_mask = mask.sum(dim=1) # Sum the mask (number of non-padding tokens)
|
|
||||||
return sum_hidden_states / sum_mask # Mean pooling
|
|
||||||
|
|
||||||
|
|
||||||
class T5EncoderForSequenceClassification(T5PreTrainedModel):
|
|
||||||
|
|
||||||
def __init__(self, checkpoint, tokenizer, config, num_labels):
|
|
||||||
super().__init__(config)
|
|
||||||
self.num_labels = num_labels
|
|
||||||
self.config = config
|
|
||||||
|
|
||||||
# we force the loading of a pre-trained model here
|
|
||||||
self.t5 = T5Model.from_pretrained(checkpoint)
|
|
||||||
self.t5.resize_token_embeddings(len(tokenizer))
|
|
||||||
classifier_dropout = (
|
|
||||||
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
|
||||||
)
|
|
||||||
self.dropout = nn.Dropout(classifier_dropout)
|
|
||||||
self.classifier = nn.Linear(config.hidden_size, self.num_labels)
|
|
||||||
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
token_type_ids: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.Tensor] = None,
|
|
||||||
head_mask: Optional[torch.Tensor] = None,
|
|
||||||
inputs_embeds: Optional[torch.Tensor] = None,
|
|
||||||
labels: Optional[torch.Tensor] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
|
||||||
r"""
|
|
||||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
||||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
||||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
||||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
||||||
"""
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
|
|
||||||
# encoder_outputs = self.t5.encoder(
|
|
||||||
# input_ids,
|
|
||||||
# attention_mask=attention_mask,
|
|
||||||
# head_mask=head_mask,
|
|
||||||
# inputs_embeds=inputs_embeds,
|
|
||||||
# output_attentions=output_attentions,
|
|
||||||
# output_hidden_states=output_hidden_states,
|
|
||||||
# return_dict=return_dict,
|
|
||||||
# )
|
|
||||||
|
|
||||||
|
|
||||||
encoder_outputs = self.t5.encoder(input_ids, attention_mask=attention_mask)
|
|
||||||
# last_hidden_state = encoder_outputs.last_hidden_state
|
|
||||||
# use mean of hidden state
|
|
||||||
# pooled_output = mean_pooling(encoder_outputs, attention_mask)
|
|
||||||
|
|
||||||
# Use the hidden state of the first token as the sequence representation
|
|
||||||
pooled_output = encoder_outputs.last_hidden_state[:, 0, :] # Shape: (batch_size, hidden_size)
|
|
||||||
|
|
||||||
# pooled_output = encoder_outputs[1]
|
|
||||||
|
|
||||||
pooled_output = self.dropout(pooled_output)
|
|
||||||
logits = self.classifier(pooled_output)
|
|
||||||
|
|
||||||
loss = None
|
|
||||||
if labels is not None:
|
|
||||||
if self.config.problem_type is None:
|
|
||||||
if self.num_labels == 1:
|
|
||||||
self.config.problem_type = "regression"
|
|
||||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
||||||
self.config.problem_type = "single_label_classification"
|
|
||||||
else:
|
|
||||||
self.config.problem_type = "multi_label_classification"
|
|
||||||
|
|
||||||
if self.config.problem_type == "regression":
|
|
||||||
loss_fct = MSELoss()
|
|
||||||
if self.num_labels == 1:
|
|
||||||
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
|
||||||
else:
|
|
||||||
loss = loss_fct(logits, labels)
|
|
||||||
elif self.config.problem_type == "single_label_classification":
|
|
||||||
loss_fct = CrossEntropyLoss()
|
|
||||||
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
||||||
elif self.config.problem_type == "multi_label_classification":
|
|
||||||
loss_fct = BCEWithLogitsLoss()
|
|
||||||
loss = loss_fct(logits, labels)
|
|
||||||
if not return_dict:
|
|
||||||
output = (logits,) + encoder_outputs[2:]
|
|
||||||
return ((loss,) + output) if loss is not None else output
|
|
||||||
|
|
||||||
return SequenceClassifierOutput(
|
|
||||||
loss=loss,
|
|
||||||
logits=logits,
|
|
||||||
hidden_states=encoder_outputs.hidden_states,
|
|
||||||
attentions=encoder_outputs.attentions,
|
|
||||||
)
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9394226218646474
|
|
||||||
Accuracy for fold 2: 0.9107476635514019
|
|
||||||
Accuracy for fold 3: 0.9548192771084337
|
|
||||||
Accuracy for fold 4: 0.972882968601332
|
|
||||||
Accuracy for fold 5: 0.8996793403573065
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,234 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# Load the checkpoint
|
|
||||||
checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
checkpoint = load_file(checkpoint_path)
|
|
||||||
# Filter out weights related to the classification head
|
|
||||||
# given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# we want: encoder.embed.tokens.weight
|
|
||||||
t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
model.load_state_dict(state_dict=t5_weights, strict=False)
|
|
||||||
|
|
||||||
for key, param in model.state_dict().items():
|
|
||||||
if key in t5_weights:
|
|
||||||
print(f"{key}: Successfully overridden")
|
|
||||||
else:
|
|
||||||
print(f"{key}: Retained original weights")
|
|
||||||
|
|
||||||
# Freeze the encoder
|
|
||||||
for param in model.encoder.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
# Freeze the shared embedding layer
|
|
||||||
for param in model.shared.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,228 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from custom_t5.modeling_t5 import T5EncoderForSequenceClassification
|
|
||||||
from transformers import (
|
|
||||||
AutoTokenizer,
|
|
||||||
AutoModelForSequenceClassification,
|
|
||||||
DataCollatorWithPadding,
|
|
||||||
Trainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
TrainingArguments,
|
|
||||||
T5Config,
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# we need to create the mdm_list
|
|
||||||
# import the full mdm-only file
|
|
||||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
mdm_list = sorted(list((set(full_df['pattern']))))
|
|
||||||
|
|
||||||
# # rather than use pattern, we use the real thing and property
|
|
||||||
# thing_property = full_df['thing'] + full_df['property']
|
|
||||||
# thing_property = thing_property.to_list()
|
|
||||||
# mdm_list = sorted(list(set(thing_property)))
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
id2label = {}
|
|
||||||
label2id = {}
|
|
||||||
for idx, val in enumerate(mdm_list):
|
|
||||||
id2label[idx] = val
|
|
||||||
label2id[val] = idx
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
# processes dataframe into lists of dictionaries
|
|
||||||
# each element maps input to output
|
|
||||||
# input: tag_description
|
|
||||||
# output: class label
|
|
||||||
def process_df_to_dict(df, mdm_list):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
# pattern = f"{row['thing'] + row['property']}"
|
|
||||||
pattern = f"{row['thing_pattern'] + ' ' + row['property_pattern']}"
|
|
||||||
try:
|
|
||||||
index = mdm_list.index(pattern)
|
|
||||||
except ValueError:
|
|
||||||
print("Error: value not found in MDM list")
|
|
||||||
index = -1
|
|
||||||
element = {
|
|
||||||
'text' : f"{desc}{unit}",
|
|
||||||
'label': index,
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold, mdm_list):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df, mdm_list)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df, mdm_list)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
|
|
||||||
save_path = f'checkpoint_fold_{fold}a'
|
|
||||||
split_datasets = create_split_dataset(fold, mdm_list)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
|
|
||||||
# model_checkpoint = "distilbert/distilbert-base-uncased"
|
|
||||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['text']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns="text",
|
|
||||||
)
|
|
||||||
|
|
||||||
# %% temp
|
|
||||||
# tokenized_datasets['train'].rename_columns()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create data collator
|
|
||||||
|
|
||||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# compute metrics
|
|
||||||
metric = evaluate.load("accuracy")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
preds = np.argmax(preds, axis=1)
|
|
||||||
return metric.compute(predictions=preds, references=labels)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# create id2label and label2id
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# model = AutoModelForSequenceClassification.from_pretrained(
|
|
||||||
# model_checkpoint,
|
|
||||||
# num_labels=len(mdm_list),
|
|
||||||
# id2label=id2label,
|
|
||||||
# label2id=label2id)
|
|
||||||
model = T5EncoderForSequenceClassification(
|
|
||||||
checkpoint=model_checkpoint,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
config=T5Config.from_pretrained(model_checkpoint),
|
|
||||||
num_labels=len(mdm_list)
|
|
||||||
)
|
|
||||||
# important! after extending tokens vocab
|
|
||||||
# model.t5.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
training_args = TrainingArguments(
|
|
||||||
output_dir=f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=80,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Trainer(
|
|
||||||
model,
|
|
||||||
training_args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
data_collator=data_collator,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
|
@ -13,7 +13,6 @@ def infer_and_select(fold):
|
||||||
# import test data
|
# import test data
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
# get target data
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9403691433980123
|
|
||||||
Accuracy for fold 2: 0.9046728971962616
|
|
||||||
Accuracy for fold 3: 0.9678714859437751
|
|
||||||
Accuracy for fold 4: 0.9695528068506185
|
|
||||||
Accuracy for fold 5: 0.902427851580394
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 12 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.8968291528632276
|
|
||||||
Accuracy for fold 2: 0.8859813084112149
|
|
||||||
Accuracy for fold 3: 0.9382530120481928
|
|
||||||
Accuracy for fold 4: 0.9586108468125595
|
|
||||||
Accuracy for fold 5: 0.8827301878149336
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 1 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9318504495977283
|
|
||||||
Accuracy for fold 2: 0.8859813084112149
|
|
||||||
Accuracy for fold 3: 0.9678714859437751
|
|
||||||
Accuracy for fold 4: 0.9738344433872502
|
|
||||||
Accuracy for fold 5: 0.9015116811726981
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 2 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9427354472314246
|
|
||||||
Accuracy for fold 2: 0.9098130841121496
|
|
||||||
Accuracy for fold 3: 0.964859437751004
|
|
||||||
Accuracy for fold 4: 0.9719314938154139
|
|
||||||
Accuracy for fold 5: 0.9070087036188731
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 3 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9503076194983436
|
|
||||||
Accuracy for fold 2: 0.9135514018691588
|
|
||||||
Accuracy for fold 3: 0.9698795180722891
|
|
||||||
Accuracy for fold 4: 0.9790675547098002
|
|
||||||
Accuracy for fold 5: 0.907924874026569
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 4 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights[:config.num_decoder_layers]):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9441552295314718
|
|
||||||
Accuracy for fold 2: 0.9121495327102803
|
|
||||||
Accuracy for fold 3: 0.963855421686747
|
|
||||||
Accuracy for fold 4: 0.9752616555661275
|
|
||||||
Accuracy for fold 5: 0.907924874026569
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 8 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.9441552295314718
|
|
||||||
Accuracy for fold 2: 0.9121495327102803
|
|
||||||
Accuracy for fold 3: 0.963855421686747
|
|
||||||
Accuracy for fold 4: 0.9752616555661275
|
|
||||||
Accuracy for fold 5: 0.907924874026569
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,255 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers.models.t5.modeling_t5 import T5Block
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
|
|
||||||
# model_checkpoint = "t5-small"
|
|
||||||
# model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# model.config
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
|
|
||||||
pretrained_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
|
|
||||||
# Access the decoder stack
|
|
||||||
# config = T5Config("t5-small")
|
|
||||||
|
|
||||||
config = pretrained_model.config
|
|
||||||
config.num_layers = 6
|
|
||||||
config.num_decoder_layers = 9 # set new decoder layer count
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration(config)
|
|
||||||
|
|
||||||
model.shared = pretrained_model.shared
|
|
||||||
model.encoder = pretrained_model.encoder
|
|
||||||
|
|
||||||
pretrained_decoder_weights = [layer.state_dict() for layer in pretrained_model.decoder.block]
|
|
||||||
for i, layer in enumerate(pretrained_decoder_weights):
|
|
||||||
model.decoder.block[i].load_state_dict(layer) # Load pretrained weights
|
|
||||||
|
|
||||||
|
|
||||||
# print number of decoder blocks
|
|
||||||
print(f'Number of decoder blocks: {len(model.decoder.block)}')
|
|
||||||
print(f'num_layers: {model.config.num_layers}')
|
|
||||||
print(f'num_decoder_layers: {model.config.num_decoder_layers}')
|
|
||||||
|
|
||||||
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,2 +0,0 @@
|
||||||
checkpoint*
|
|
||||||
tensorboard-log
|
|
|
@ -1,2 +0,0 @@
|
||||||
__pycache__
|
|
||||||
exports/
|
|
|
@ -1,168 +0,0 @@
|
||||||
import torch
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from transformers import (
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
)
|
|
||||||
import os
|
|
||||||
from tqdm import tqdm
|
|
||||||
from datasets import Dataset
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
|
||||||
|
|
||||||
|
|
||||||
class Inference():
|
|
||||||
tokenizer: T5TokenizerFast
|
|
||||||
model: torch.nn.Module
|
|
||||||
dataloader: DataLoader
|
|
||||||
|
|
||||||
def __init__(self, checkpoint_path):
|
|
||||||
self._create_tokenizer()
|
|
||||||
self._load_model(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
def _create_tokenizer(self):
|
|
||||||
# %%
|
|
||||||
# load tokenizer
|
|
||||||
self.tokenizer = T5TokenizerFast.from_pretrained("t5-small", return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "SIG", "UNIT", "DATA_TYPE"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
def _load_model(self, checkpoint_path: str):
|
|
||||||
# load model
|
|
||||||
# Define the directory and the pattern
|
|
||||||
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint_path)
|
|
||||||
model = torch.compile(model)
|
|
||||||
# set model to eval
|
|
||||||
self.model = model.eval()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_dataloader(self, input_df, batch_size, max_length):
|
|
||||||
"""
|
|
||||||
*arguments*
|
|
||||||
- input_df: input dataframe containing fields 'tag_description', 'thing', 'property'
|
|
||||||
- batch_size: the batch size of dataloader output
|
|
||||||
- max_length: length of tokenizer output
|
|
||||||
"""
|
|
||||||
print("preparing dataloader")
|
|
||||||
# convert each dataframe row into a dictionary
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
|
|
||||||
def _process_df(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
def _preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = self.tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
return_tensors="pt",
|
|
||||||
padding="max_length",
|
|
||||||
truncation=True,
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
test_dataset = Dataset.from_list(_process_df(input_df))
|
|
||||||
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
datasets = test_dataset.map(
|
|
||||||
_preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=1,
|
|
||||||
remove_columns=test_dataset.column_names,
|
|
||||||
)
|
|
||||||
# datasets = _preprocess_function(test_dataset)
|
|
||||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
||||||
|
|
||||||
# create dataloader
|
|
||||||
self.dataloader = DataLoader(datasets, batch_size=batch_size)
|
|
||||||
|
|
||||||
|
|
||||||
def generate(self):
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
MAX_GENERATE_LENGTH = 128
|
|
||||||
|
|
||||||
pred_generations = []
|
|
||||||
pred_labels = []
|
|
||||||
|
|
||||||
print("start generation")
|
|
||||||
for batch in tqdm(self.dataloader):
|
|
||||||
# Inference in batches
|
|
||||||
input_ids = batch['input_ids']
|
|
||||||
attention_mask = batch['attention_mask']
|
|
||||||
# save labels too
|
|
||||||
pred_labels.extend(batch['labels'])
|
|
||||||
|
|
||||||
|
|
||||||
# Move to GPU if available
|
|
||||||
input_ids = input_ids.to(device)
|
|
||||||
attention_mask = attention_mask.to(device)
|
|
||||||
self.model.to(device)
|
|
||||||
|
|
||||||
# Perform inference
|
|
||||||
with torch.no_grad():
|
|
||||||
outputs = self.model.generate(input_ids,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
max_length=MAX_GENERATE_LENGTH)
|
|
||||||
|
|
||||||
# Decode the output and print the results
|
|
||||||
pred_generations.extend(outputs.to("cpu"))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# extract sequence and decode
|
|
||||||
def extract_seq(tokens, start_value, end_value):
|
|
||||||
if start_value not in tokens or end_value not in tokens:
|
|
||||||
return None # Or handle this case according to your requirements
|
|
||||||
start_id = np.where(tokens == start_value)[0][0]
|
|
||||||
end_id = np.where(tokens == end_value)[0][0]
|
|
||||||
|
|
||||||
return tokens[start_id+1:end_id]
|
|
||||||
|
|
||||||
|
|
||||||
def process_tensor_output(tokens):
|
|
||||||
thing_seq = extract_seq(tokens, 32100, 32101) # 32100 = <THING_START>, 32101 = <THING_END>
|
|
||||||
property_seq = extract_seq(tokens, 32102, 32103) # 32102 = <PROPERTY_START>, 32103 = <PROPERTY_END>
|
|
||||||
p_thing = None
|
|
||||||
p_property = None
|
|
||||||
if (thing_seq is not None):
|
|
||||||
p_thing = self.tokenizer.decode(thing_seq, skip_special_tokens=False)
|
|
||||||
if (property_seq is not None):
|
|
||||||
p_property = self.tokenizer.decode(property_seq, skip_special_tokens=False)
|
|
||||||
return p_thing, p_property
|
|
||||||
|
|
||||||
# decode prediction labels
|
|
||||||
def decode_preds(tokens_list):
|
|
||||||
thing_prediction_list = []
|
|
||||||
property_prediction_list = []
|
|
||||||
for tokens in tokens_list:
|
|
||||||
p_thing, p_property = process_tensor_output(tokens)
|
|
||||||
thing_prediction_list.append(p_thing)
|
|
||||||
property_prediction_list.append(p_property)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
||||||
thing_prediction_list, property_prediction_list = decode_preds(pred_generations)
|
|
||||||
return thing_prediction_list, property_prediction_list
|
|
||||||
|
|
|
@ -1,6 +0,0 @@
|
||||||
|
|
||||||
Accuracy for fold 1: 0.0
|
|
||||||
Accuracy for fold 2: 0.0
|
|
||||||
Accuracy for fold 3: 0.0
|
|
||||||
Accuracy for fold 4: 0.0
|
|
||||||
Accuracy for fold 5: 0.0
|
|
|
@ -1,74 +0,0 @@
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
from inference import Inference
|
|
||||||
|
|
||||||
checkpoint_directory = '../'
|
|
||||||
|
|
||||||
BATCH_SIZE = 512
|
|
||||||
|
|
||||||
def infer_and_select(fold):
|
|
||||||
print(f"Inference for fold {fold}")
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
df = df[df['MDM']].reset_index(drop=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
train_df['thing_property'] = train_df['thing'] + " " + train_df['property']
|
|
||||||
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# run inference
|
|
||||||
# checkpoint
|
|
||||||
# Use glob to find matching paths
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}b')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
|
|
||||||
infer = Inference(checkpoint_path)
|
|
||||||
infer.prepare_dataloader(df, batch_size=BATCH_SIZE, max_length=128)
|
|
||||||
thing_prediction_list, property_prediction_list = infer.generate()
|
|
||||||
|
|
||||||
# add labels too
|
|
||||||
# thing_actual_list, property_actual_list = decode_preds(pred_labels)
|
|
||||||
# Convert the list to a Pandas DataFrame
|
|
||||||
df_out = pd.DataFrame({
|
|
||||||
'p_thing': thing_prediction_list,
|
|
||||||
'p_property': property_prediction_list
|
|
||||||
})
|
|
||||||
# df_out['p_thing_correct'] = df_out['p_thing'] == df_out['thing']
|
|
||||||
# df_out['p_property_correct'] = df_out['p_property'] == df_out['property']
|
|
||||||
df = pd.concat([df, df_out], axis=1)
|
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
df.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
|
||||||
|
|
||||||
# here we want to evaluate mapping accuracy within the valid in mdm data only
|
|
||||||
in_mdm = df['MDM']
|
|
||||||
condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
condition_correct_property = df['p_property'] == df['property']
|
|
||||||
prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & in_mdm)
|
|
||||||
pred_correct_proportion = prediction_mdm_correct/sum(in_mdm)
|
|
||||||
|
|
||||||
# write output to file output.txt
|
|
||||||
with open("output.txt", "a") as f:
|
|
||||||
print(f'Accuracy for fold {fold}: {pred_correct_proportion}', file=f)
|
|
||||||
|
|
||||||
###########################################
|
|
||||||
# Execute for all folds
|
|
||||||
|
|
||||||
# reset file before writing to it
|
|
||||||
with open("output.txt", "w") as f:
|
|
||||||
print('', file=f)
|
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
infer_and_select(fold)
|
|
|
@ -1,246 +0,0 @@
|
||||||
# %%
|
|
||||||
|
|
||||||
# from datasets import load_from_disk
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
|
|
||||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
|
||||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
|
||||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
from safetensors.torch import load_file
|
|
||||||
|
|
||||||
from transformers import T5ForConditionalGeneration, T5Config
|
|
||||||
from transformers import (
|
|
||||||
T5Config,
|
|
||||||
T5TokenizerFast,
|
|
||||||
AutoModelForSeq2SeqLM,
|
|
||||||
DataCollatorForSeq2Seq,
|
|
||||||
Seq2SeqTrainer,
|
|
||||||
EarlyStoppingCallback,
|
|
||||||
Seq2SeqTrainingArguments,
|
|
||||||
T5ForConditionalGeneration,
|
|
||||||
T5Model
|
|
||||||
)
|
|
||||||
import evaluate
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
# import matplotlib.pyplot as plt
|
|
||||||
from datasets import Dataset, DatasetDict
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
|
||||||
|
|
||||||
# outputs a list of dictionaries
|
|
||||||
def process_df_to_dict(df):
|
|
||||||
output_list = []
|
|
||||||
for _, row in df.iterrows():
|
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
|
||||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
|
||||||
element = {
|
|
||||||
'input' : f"{desc}{unit}",
|
|
||||||
'output': f"<THING_START>{row['thing']}<THING_END><PROPERTY_START>{row['property']}<PROPERTY_END>",
|
|
||||||
}
|
|
||||||
output_list.append(element)
|
|
||||||
|
|
||||||
return output_list
|
|
||||||
|
|
||||||
|
|
||||||
def create_split_dataset(fold):
|
|
||||||
# train
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# valid
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
|
||||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
combined_data = DatasetDict({
|
|
||||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
|
||||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
|
||||||
})
|
|
||||||
return combined_data
|
|
||||||
|
|
||||||
|
|
||||||
# function to perform training for a given fold
|
|
||||||
def train(fold):
|
|
||||||
save_path = f'checkpoint_fold_{fold}b'
|
|
||||||
split_datasets = create_split_dataset(fold)
|
|
||||||
|
|
||||||
# prepare tokenizer
|
|
||||||
model_checkpoint = "t5-small"
|
|
||||||
tokenizer = T5TokenizerFast.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
|
||||||
# Define additional special tokens
|
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
|
||||||
# Add the additional special tokens to the tokenizer
|
|
||||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
|
||||||
|
|
||||||
max_length = 120
|
|
||||||
|
|
||||||
# given a dataset entry, run it through the tokenizer
|
|
||||||
def preprocess_function(example):
|
|
||||||
input = example['input']
|
|
||||||
target = example['output']
|
|
||||||
# text_target sets the corresponding label to inputs
|
|
||||||
# there is no need to create a separate 'labels'
|
|
||||||
model_inputs = tokenizer(
|
|
||||||
input,
|
|
||||||
text_target=target,
|
|
||||||
max_length=max_length,
|
|
||||||
truncation=True,
|
|
||||||
padding="max_length"
|
|
||||||
)
|
|
||||||
return model_inputs
|
|
||||||
|
|
||||||
# map maps function to each "row" in the dataset
|
|
||||||
# aka the data in the immediate nesting
|
|
||||||
tokenized_datasets = split_datasets.map(
|
|
||||||
preprocess_function,
|
|
||||||
batched=True,
|
|
||||||
num_proc=8,
|
|
||||||
remove_columns=split_datasets["train"].column_names,
|
|
||||||
)
|
|
||||||
|
|
||||||
# https://github.com/huggingface/transformers/pull/28414
|
|
||||||
# model_checkpoint = "google/t5-efficient-tiny"
|
|
||||||
# device_map set to auto to force it to load contiguous weights
|
|
||||||
# model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, device_map='auto')
|
|
||||||
|
|
||||||
# directory = os.path.join(".", f'checkpoint_fold_{fold}a')
|
|
||||||
# # Use glob to find matching paths
|
|
||||||
# # path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# # we are guaranteed to save only 1 checkpoint from training
|
|
||||||
# pattern = 'checkpoint-*'
|
|
||||||
# prev_checkpoint = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
# # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
|
||||||
# # Load the checkpoint
|
|
||||||
# checkpoint_path = f"{prev_checkpoint}/model.safetensors"
|
|
||||||
# checkpoint = load_file(checkpoint_path)
|
|
||||||
# # Filter out weights related to the classification head
|
|
||||||
# # given name format: t5.encoder.embed_tokens.weight
|
|
||||||
# # we want: encoder.embed.tokens.weight
|
|
||||||
# t5_weights= {key.replace("t5.", "", 1): value for key, value in checkpoint.items() if "classifier" not in key}
|
|
||||||
|
|
||||||
model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
|
|
||||||
# change the token embedding size to match the shape
|
|
||||||
model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
|
|
||||||
# Create a T5 model with random weights
|
|
||||||
config = T5Config.from_pretrained("t5-small") # Use T5 configuration
|
|
||||||
random_model = T5ForConditionalGeneration(config) # Model initialized with random weights
|
|
||||||
random_model.resize_token_embeddings(len(tokenizer))
|
|
||||||
|
|
||||||
model.encoder = random_model.encoder
|
|
||||||
model.shared = random_model.shared
|
|
||||||
|
|
||||||
# model.load_state_dict(state_dict=t5_weights, strict=False)
|
|
||||||
|
|
||||||
# for key, param in model.state_dict().items():
|
|
||||||
# if key in t5_weights:
|
|
||||||
# print(f"{key}: Successfully overridden")
|
|
||||||
# else:
|
|
||||||
# print(f"{key}: Retained original weights")
|
|
||||||
|
|
||||||
|
|
||||||
# Freeze the encoder
|
|
||||||
for param in model.encoder.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
# Freeze the shared embedding layer
|
|
||||||
for param in model.shared.parameters():
|
|
||||||
param.requires_grad = False
|
|
||||||
|
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
|
||||||
metric = evaluate.load("sacrebleu")
|
|
||||||
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
# In case the model returns more than the prediction logits
|
|
||||||
if isinstance(preds, tuple):
|
|
||||||
preds = preds[0]
|
|
||||||
|
|
||||||
decoded_preds = tokenizer.batch_decode(preds,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Replace -100s in the labels as we can't decode them
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels,
|
|
||||||
skip_special_tokens=False)
|
|
||||||
|
|
||||||
# Remove <PAD> tokens from decoded predictions and labels
|
|
||||||
decoded_preds = [pred.replace(tokenizer.pad_token, '').strip() for pred in decoded_preds]
|
|
||||||
decoded_labels = [[label.replace(tokenizer.pad_token, '').strip()] for label in decoded_labels]
|
|
||||||
|
|
||||||
# Some simple post-processing
|
|
||||||
# decoded_preds = [pred.strip() for pred in decoded_preds]
|
|
||||||
# decoded_labels = [[label.strip()] for label in decoded_labels]
|
|
||||||
# print(decoded_preds, decoded_labels)
|
|
||||||
|
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
|
|
||||||
return {"bleu": result["score"]}
|
|
||||||
|
|
||||||
|
|
||||||
# Generation Config
|
|
||||||
# from transformers import GenerationConfig
|
|
||||||
gen_config = model.generation_config
|
|
||||||
gen_config.max_length = 128
|
|
||||||
|
|
||||||
# compile
|
|
||||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
|
||||||
|
|
||||||
|
|
||||||
# Trainer
|
|
||||||
|
|
||||||
args = Seq2SeqTrainingArguments(
|
|
||||||
f"{save_path}",
|
|
||||||
# eval_strategy="epoch",
|
|
||||||
eval_strategy="no",
|
|
||||||
logging_dir="tensorboard-log",
|
|
||||||
logging_strategy="epoch",
|
|
||||||
# save_strategy="epoch",
|
|
||||||
load_best_model_at_end=False,
|
|
||||||
learning_rate=1e-3,
|
|
||||||
per_device_train_batch_size=64,
|
|
||||||
per_device_eval_batch_size=64,
|
|
||||||
auto_find_batch_size=False,
|
|
||||||
ddp_find_unused_parameters=False,
|
|
||||||
weight_decay=0.01,
|
|
||||||
save_total_limit=1,
|
|
||||||
num_train_epochs=40,
|
|
||||||
predict_with_generate=True,
|
|
||||||
bf16=True,
|
|
||||||
push_to_hub=False,
|
|
||||||
generation_config=gen_config,
|
|
||||||
remove_unused_columns=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
trainer = Seq2SeqTrainer(
|
|
||||||
model,
|
|
||||||
args,
|
|
||||||
train_dataset=tokenized_datasets["train"],
|
|
||||||
eval_dataset=tokenized_datasets["validation"],
|
|
||||||
data_collator=data_collator,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
compute_metrics=compute_metrics,
|
|
||||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
|
||||||
)
|
|
||||||
|
|
||||||
# uncomment to load training from checkpoint
|
|
||||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
|
||||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
# execute training
|
|
||||||
for fold in [1,2,3,4,5]:
|
|
||||||
print(fold)
|
|
||||||
train(fold)
|
|
||||||
|
|
|
@ -1,27 +1,16 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
cd hybrid_t5_complete_desc_unit
|
cd classification_bert_complete_desc
|
||||||
micromamba run -n hug accelerate launch train_encoder.py
|
micromamba run -n hug accelerate launch train.py
|
||||||
micromamba run -n hug accelerate launch train_decoder.py
|
|
||||||
cd ..
|
cd ..
|
||||||
|
|
||||||
cd hybrid_t5_pattern_desc_unit
|
cd classification_bert_complete_desc_unit
|
||||||
micromamba run -n hug accelerate launch train_encoder.py
|
micromamba run -n hug accelerate launch train.py
|
||||||
micromamba run -n hug accelerate launch train_decoder.py
|
|
||||||
cd ..
|
cd ..
|
||||||
|
|
||||||
|
cd classification_bert_complete_desc_unit_name
|
||||||
# cd classification_bert_complete_desc
|
micromamba run -n hug accelerate launch train.py
|
||||||
# micromamba run -n hug accelerate launch train.py
|
cd ..
|
||||||
# cd ..
|
|
||||||
|
|
||||||
# cd classification_bert_complete_desc_unit
|
|
||||||
# micromamba run -n hug accelerate launch train.py
|
|
||||||
# cd ..
|
|
||||||
|
|
||||||
# cd classification_bert_complete_desc_unit_name
|
|
||||||
# micromamba run -n hug accelerate launch train.py
|
|
||||||
# cd ..
|
|
||||||
|
|
||||||
# cd mapping_t5_complete_desc
|
# cd mapping_t5_complete_desc
|
||||||
# micromamba run -n hug accelerate launch train.py
|
# micromamba run -n hug accelerate launch train.py
|
||||||
|
|
Loading…
Reference in New Issue