diff --git a/analysis/bert/utils.py b/analysis/bert/utils.py index 7392376..f618b67 100644 --- a/analysis/bert/utils.py +++ b/analysis/bert/utils.py @@ -49,23 +49,34 @@ class Retriever: self.embeddings = all_embeddings -def cosine_similarity_chunked(batch1, batch2, chunk_size=16): +def cosine_similarity_chunked(batch1, batch2, chunk_size=1024): + device = 'cuda' batch1_size = batch1.size(0) batch2_size = batch2.size(0) + batch2.to(device) # Prepare an empty tensor to store results - cos_sim = torch.empty(batch1_size, batch2_size, device=batch1.device) + cos_sim = torch.empty(batch1_size, batch2_size, device=device) # Process batch1 in chunks for i in range(0, batch1_size, chunk_size): batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1 + batch1_chunk.to(device) # Expand batch1 chunk and entire batch2 for comparison - batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) - batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + # batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) + # batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + batch2_norms = batch2.norm(dim=1, keepdim=True) + # Compute cosine similarity for the chunk and store it in the final tensor - cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + + # Compute cosine similarity by matrix multiplication and normalizing + sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8) + + # Store the results in the appropriate part of the final tensor + cos_sim[i:i + chunk_size] = sim_chunk return cos_sim diff --git a/analysis/categories/label_print.py b/analysis/categories/label_print.py new file mode 100644 index 0000000..7d649de --- /dev/null +++ b/analysis/categories/label_print.py @@ -0,0 +1,12 @@ +# %% +# we need to create the mdm_list +# import the full mdm-only file +import pandas as pd +data_path = '../../data_import/exports/data_mapping_mdm.csv' +full_df = pd.read_csv(data_path, skipinitialspace=True) +mdm_list = sorted(list((set(full_df['pattern'])))) + + +# %% +mdm_list +# %% diff --git a/analysis/t5/utils.py b/analysis/t5/utils.py index 12a0ac5..745445c 100644 --- a/analysis/t5/utils.py +++ b/analysis/t5/utils.py @@ -53,23 +53,34 @@ class Retriever: self.embeddings = all_embeddings -def cosine_similarity_chunked(batch1, batch2, chunk_size=16): +def cosine_similarity_chunked(batch1, batch2, chunk_size=1024): + device = 'cuda' batch1_size = batch1.size(0) batch2_size = batch2.size(0) + batch2.to(device) # Prepare an empty tensor to store results - cos_sim = torch.empty(batch1_size, batch2_size, device=batch1.device) + cos_sim = torch.empty(batch1_size, batch2_size, device=device) # Process batch1 in chunks for i in range(0, batch1_size, chunk_size): batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1 + batch1_chunk.to(device) # Expand batch1 chunk and entire batch2 for comparison - batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) - batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + # batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) + # batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + batch2_norms = batch2.norm(dim=1, keepdim=True) + # Compute cosine similarity for the chunk and store it in the final tensor - cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + + # Compute cosine similarity by matrix multiplication and normalizing + sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8) + + # Store the results in the appropriate part of the final tensor + cos_sim[i:i + chunk_size] = sim_chunk return cos_sim diff --git a/post_process/ood/.gitignore b/post_process/ood/.gitignore new file mode 100644 index 0000000..bee8a64 --- /dev/null +++ b/post_process/ood/.gitignore @@ -0,0 +1 @@ +__pycache__ diff --git a/post_process/ood/similarity.py b/post_process/ood/similarity.py new file mode 100644 index 0000000..a11a16b --- /dev/null +++ b/post_process/ood/similarity.py @@ -0,0 +1,288 @@ +# %% +import pandas as pd +from utils import Retriever, cosine_similarity_chunked +import os +import glob +import numpy as np +from tqdm import tqdm + +# %% +fold = 1 +data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv' +test_df = pd.read_csv(data_path, skipinitialspace=True) + +# %% +class Embedder(): + input_df: pd.DataFrame + fold: int + + def __init__(self, input_df): + self.input_df = input_df + + + def make_embedding(self, checkpoint_path): + + def generate_input_list(df): + input_list = [] + for _, row in df.iterrows(): + desc = f"{row['tag_description']}" + unit = f"{row['unit']}" + element = f"{desc}{unit}" + input_list.append(element) + return input_list + + # prepare reference embed + train_data = list(generate_input_list(self.input_df)) + # Define the directory and the pattern + retriever_train = Retriever(train_data, checkpoint_path) + retriever_train.make_embedding(batch_size=64) + return retriever_train.embeddings.to('cpu') + + + +# %% +data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv" +train_df = pd.read_csv(data_path, skipinitialspace=True) + +checkpoint_directory = "../../train/classification_bert" +directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}') +# Use glob to find matching paths +# path is usually checkpoint_fold_1/checkpoint- +# we are guaranteed to save only 1 checkpoint from training +pattern = 'checkpoint-*' +checkpoint_path = glob.glob(os.path.join(directory, pattern))[0] + +train_embedder = Embedder(input_df=train_df) +train_embeds = train_embedder.make_embedding(checkpoint_path) + +test_embedder = Embedder(input_df=test_df) +test_embeds = test_embedder.make_embedding(checkpoint_path) + + + +# %% +# test embeds are inputs since we are looking back at train data +cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy() + + +# %% +# the following function takes in a full cos_sim_matrix +# condition_source: boolean selectors of the source embedding +# condition_target: boolean selectors of the target embedding +def find_closest(cos_sim_matrix, condition_source, condition_target): + # subset_matrix = cos_sim_matrix[condition_source] + # except we are subsetting 2D matrix (row, column) + subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)] + # we select top k here + # Get the indices of the top 5 maximum values along axis 1 + top_k = 3 + top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values + # note that top_k_indices is a nested list because of the 2d nature of the matrix + # the result is flipped + top_k_indices[0] = top_k_indices[0][::-1] + + # Get the values of the top 5 maximum scores + top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1) + + + return top_k_indices, top_k_values + + +#################################################### +# special find-back code +# %% +def find_back_element_with_print(select_idx): + condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0] + condition_target = np.ones(train_embeds.shape[0], dtype=bool) + + top_k_indices, top_k_values = find_closest( + cos_sim_matrix=cos_sim_matrix, + condition_source=condition_source, + condition_target=condition_target) + + training_data_pattern_list = train_df.iloc[top_k_indices[0]]['pattern'].to_list() + training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list() + + test_data_pattern_list = test_df[test_df.index == select_idx]['pattern'].to_list() + test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list() + test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0] + predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property'] + predicted_test_data = predicted_test_data.to_list()[0] + + print("*" * 80) + print("idx:", select_idx) + print("train desc", training_desc_list) + print("train thing+property", training_data_pattern_list) + print("test desc", test_desc_list) + print("test thing+property", test_data_pattern_list) + print("predicted thing+property", predicted_test_data) + print("ships idx", test_ship_id) + print("score:", top_k_values[0]) + + test_pattern = test_data_pattern_list[0] + + find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ] + + if sum(find_back_list) > 0: + return True + else: + return False + + +# %% +def find_back_element(select_idx): + in_train_flag = False + condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0] + condition_target = np.ones(train_embeds.shape[0], dtype=bool) + + top_k_indices, top_k_values = find_closest( + cos_sim_matrix=cos_sim_matrix, + condition_source=condition_source, + condition_target=condition_target) + + training_data_pattern_list = train_df.iloc[top_k_indices[0]]['pattern'].to_list() + + test_data_pattern_list = test_df[test_df.index == select_idx]['pattern'].to_list() + # just to convert the series format to string + test_pattern = test_data_pattern_list[0] + # print(training_data_pattern_list) + # print(test_data_pattern_list) + + + find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ] + + if sum(find_back_list) > 0: + in_train_flag = True + else: + in_train_flag = False + + return in_train_flag, top_k_values[0][0] + +# %% +in_train_list = [] +sim_list = [] +for select_idx in tqdm(test_df.index): + in_train_flag, top_sim_value = find_back_element(select_idx) + in_train_list.append(in_train_flag) + sim_list.append(top_sim_value) + +# analysis 1: using threshold to perform find-back prediction success +# %% +threshold = 0.9 +predict_list = [ elem > threshold for elem in sim_list ] + +# %% +from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix +y_true = in_train_list +y_pred = predict_list + +# Compute metrics +accuracy = accuracy_score(y_true, y_pred) +f1 = f1_score(y_true, y_pred, average='macro') +precision = precision_score(y_true, y_pred, average='macro') +recall = recall_score(y_true, y_pred, average='macro') + +# Print the results +print(f'Accuracy: {accuracy:.5f}') +print(f'F1 Score: {f1:.5f}') +print(f'Precision: {precision:.5f}') +print(f'Recall: {recall:.5f}') + +# analysis 2: using find-back class to check distribution of similarities +# %% +sim_list_true = [] +sim_list_false = [] +for idx, elem in enumerate(in_train_list): + # true condition + if elem: + sim_list_true.append(sim_list[idx]) + else: + sim_list_false.append(sim_list[idx]) + +# %% +import matplotlib.pyplot as plt + +# Sample data +list1 = sim_list_true +list2 = sim_list_false + +# Plot histograms +bins = 50 +plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=False) +plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=False) + +# Labels and legend +plt.xlabel('Value') +plt.ylabel('Frequency') +plt.legend(loc='upper right') +plt.title('Histograms of in-dist and out-dist similarities') + +# Show plot +plt.show() + +# analysis 3 +# MDM result +# MDM is not an accurate measure due to inconsistencies in training and test +# distributions +# e.g. training is a subset of MDM data, but test could contain MDM data not +# found in train, therefore we cannot possibly achieve perfect prediction of +# 'MDM' data + +# it is more accurate to use the result obtained from the find-back search +# %% +# there are 2183 actual datasets +sum(test_df['MDM']) +# %% +# we find 3079 to be similar to the training distribution +sum(predict_list) +# %% +# in actuality only 2051 are similar to the training distribution enough to find +# answers during find-back +sum(in_train_list) +# %% +# out of predicted, 1947 are mdm +# by setting a threshold, we are able to get 95% of 2051 +sum(test_df[predict_list]['MDM']) + +# %% +# out of find-back labels, 2051 are mdm +# this represents the limit of the data distributional differences +sum(test_df[in_train_list]['MDM']) + +# analysis 4 +# check if similarity is different between mdm and non-mdm +# this also checks the validity of the selection approach +# %% +sim_list_true = [] +sim_list_false = [] +in_mdm_list = test_df['MDM'].to_list() +for idx, elem in enumerate(in_mdm_list): + # true condition + if elem: + sim_list_true.append(sim_list[idx]) + else: + sim_list_false.append(sim_list[idx]) + +# %% +import matplotlib.pyplot as plt + +# Sample data +list1 = sim_list_true +list2 = sim_list_false + +# Plot histograms +bins = 50 +plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=False) +plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=False) + +# Labels and legend +plt.xlabel('Value') +plt.ylabel('Frequency') +plt.legend(loc='upper right') +plt.title('Histograms of in-dist and out-dist similarities') + +# Show plot +plt.show() + + +# %% diff --git a/post_process/ood/utils.py b/post_process/ood/utils.py new file mode 100644 index 0000000..98749be --- /dev/null +++ b/post_process/ood/utils.py @@ -0,0 +1,81 @@ +import torch +from transformers import ( + AutoTokenizer, + AutoModelForSequenceClassification, + DataCollatorWithPadding, +) +import torch.nn.functional as F + + + +class Retriever: + def __init__(self, input_texts, model_checkpoint): + # we need to generate the embedding from list of input strings + self.embeddings = [] + self.inputs = input_texts + model_checkpoint = model_checkpoint + self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True) + + model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint) + self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + # device = "cpu" + model.to(self.device) + self.model = model.eval() + + + def make_embedding(self, batch_size=64): + all_embeddings = self.embeddings + input_texts = self.inputs + + for i in range(0, len(input_texts), batch_size): + batch_texts = input_texts[i:i+batch_size] + # Tokenize the input text + inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64) + input_ids = inputs.input_ids.to(self.device) + attention_mask = inputs.attention_mask.to(self.device) + + + # Pass the input through the encoder and retrieve the embeddings + with torch.no_grad(): + encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True) + # get last layer + embeddings = encoder_outputs.hidden_states[-1] + # get cls token embedding + cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size) + all_embeddings.append(cls_embeddings) + + # remove the batch list and makes a single large tensor, dim=0 increases row-wise + all_embeddings = torch.cat(all_embeddings, dim=0) + + self.embeddings = all_embeddings + +def cosine_similarity_chunked(batch1, batch2, chunk_size=1024): + device = 'cuda' + batch1_size = batch1.size(0) + batch2_size = batch2.size(0) + batch2.to(device) + + # Prepare an empty tensor to store results + cos_sim = torch.empty(batch1_size, batch2_size, device=device) + + # Process batch1 in chunks + for i in range(0, batch1_size, chunk_size): + batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1 + + batch1_chunk.to(device) + # Expand batch1 chunk and entire batch2 for comparison + # batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) + # batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + batch2_norms = batch2.norm(dim=1, keepdim=True) + + + # Compute cosine similarity for the chunk and store it in the final tensor + # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + + # Compute cosine similarity by matrix multiplication and normalizing + sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8) + + # Store the results in the appropriate part of the final tensor + cos_sim[i:i + chunk_size] = sim_chunk + + return cos_sim \ No newline at end of file diff --git a/post_process/selection/utils.py b/post_process/selection/utils.py index b2f2116..a59e8f2 100644 --- a/post_process/selection/utils.py +++ b/post_process/selection/utils.py @@ -54,23 +54,34 @@ class Retriever: self.embeddings = all_embeddings -def cosine_similarity_chunked(batch1, batch2, chunk_size=16): +def cosine_similarity_chunked(batch1, batch2, chunk_size=1024): + device = 'cuda' batch1_size = batch1.size(0) batch2_size = batch2.size(0) + batch2.to(device) # Prepare an empty tensor to store results - cos_sim = torch.empty(batch1_size, batch2_size, device=batch1.device) + cos_sim = torch.empty(batch1_size, batch2_size, device=device) # Process batch1 in chunks for i in range(0, batch1_size, chunk_size): batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1 + batch1_chunk.to(device) # Expand batch1 chunk and entire batch2 for comparison - batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) - batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + # batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len) + # batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len) + batch2_norms = batch2.norm(dim=1, keepdim=True) + # Compute cosine similarity for the chunk and store it in the final tensor - cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + # cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1) + + # Compute cosine similarity by matrix multiplication and normalizing + sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8) + + # Store the results in the appropriate part of the final tensor + cos_sim[i:i + chunk_size] = sim_chunk return cos_sim