Feat: tuned selection_with_pattern to perform better

This commit is contained in:
Richard Wong 2024-11-11 21:47:24 +09:00
parent 7699201cb8
commit 96e7394c59
5 changed files with 213 additions and 242 deletions

View File

@ -1 +1,2 @@
__pycache__
output.txt

View File

@ -1,56 +0,0 @@
********************************************************************************
Statistics for fold 1
tp: 1792
tn: 10533
fp: 428
fn: 321
fold: 1
accuracy: 0.9427107235735047
f1_score: 0.827140549273021
precision: 0.8072072072072072
recall: 0.8480832938949361
********************************************************************************
Statistics for fold 2
tp: 1875
tn: 8189
fp: 393
fn: 265
fold: 2
accuracy: 0.9386308524529006
f1_score: 0.8507259528130672
precision: 0.8267195767195767
recall: 0.8761682242990654
********************************************************************************
Statistics for fold 3
tp: 1831
tn: 7455
fp: 408
fn: 161
fold: 3
accuracy: 0.9422628107559614
f1_score: 0.8655164263767431
precision: 0.8177757927646271
recall: 0.9191767068273092
********************************************************************************
Statistics for fold 4
tp: 1909
tn: 12866
fp: 483
fn: 193
fold: 4
accuracy: 0.9562487864863116
f1_score: 0.8495772140631954
precision: 0.7980769230769231
recall: 0.9081826831588963
********************************************************************************
Statistics for fold 5
tp: 1928
tn: 10359
fp: 427
fn: 255
fold: 5
accuracy: 0.9474130619168787
f1_score: 0.8497135301895108
precision: 0.818683651804671
recall: 0.8831882730187814

View File

@ -3,11 +3,11 @@ import os
import glob
# directory for checkpoints
checkpoint_directory = '../../train/baseline'
checkpoint_directory = '../../train/mapping_with_unit'
def select(fold):
# import test data
data_path = f"../../train/mapping/exports/result_group_{fold}.csv"
data_path = f"../../train/mapping_with_unit/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
@ -43,26 +43,6 @@ def select(fold):
df = data_mapping
# we can save the t5 generation output here
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
# condition1 = df['MDM']
# condition2 = df['p_MDM']
# condition_correct_thing = df['p_thing'] == df['thing']
# condition_correct_property = df['p_property'] == df['property']
# match = sum(condition1 & condition2)
# fn = sum(condition1 & ~condition2)
# prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
# print("mdm match predicted mdm: ", match) # 56 - false negative
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
# print("total mdm: ", sum(condition1)) # 2113
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
# print("correct mdm predicted", prediction_mdm_correct)
# selection
###########################################

View File

@ -5,39 +5,18 @@ import glob
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
import numpy as np
from utils import BertEmbedder, cosine_similarity_chunked
from fuzzywuzzy import fuzz
##################
# global parameters
DIAGNOSTIC = False
THRESHOLD = 0.85
FUZZY_SIM_THRESHOLD=95
checkpoint_directory = "../../train/classification_bert_desc"
###################
# %%
# directory for checkpoints
checkpoint_directory = '../../train/mapping_pattern'
fold = 5
# import test data
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# processing to help with selection later
# %%
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
# %%
# obtain the full mdm_list
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
# %%
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
# %%
# for ship_idx in ships_list:
ship_idx = 1009 # choose an example ship
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
# helper functions
class Embedder():
input_df: pd.DataFrame
fold: int
@ -65,101 +44,6 @@ class Embedder():
# %%
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
checkpoint_directory = "../../train/classification_bert"
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
test_embedder = Embedder(input_df=ship_df)
test_embeds = test_embedder.make_embedding(checkpoint_path)
# %%
# test embeds are inputs since we are looking back at train data
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list
# %%
answer_list = np.ones(len(ship_df), dtype=bool)
##########################################
# %%
# STEP 1
# we want to loop through the the ship_df and find which ones match our full_mdm_list
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
# we assign only those that are False to our answer list
# right now the 2 arrays are basically equal
answer_list[~pattern_match_mask] = False
# %% TEMP
print('proportion belonging to mdm classes', sum(pattern_match_mask)/len(pattern_match_mask))
# %% TEMP
y_true = ship_df['MDM'].to_list()
y_pred = pattern_match_mask
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
print(f'Accuracy: {accuracy:.5f}')
# we can see that the accuracy is not good
# %%
#########################################
# STEP 2
# we want to go through each mdm class label
# but we do not want to make subsets of dataframes
# we will make heavy use of boolean masks
# we want to identify per-ship mdm classes
ship_mdm_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
# %%
len(ship_mdm_classes)
# %%
for idx,select_class in enumerate(ship_mdm_classes):
print(idx, len(ship_df[ship_df['p_pattern'] == select_class]))
# %%
select_class = ship_mdm_classes[22]
sample_df = ship_df[ship_df['p_pattern'] == select_class]
# %%
# we need to set all idx of chosen entries as False in answer_list
selected_idx_list = sample_df.index.to_list()
answer_list[selected_idx_list] = False
# %%
# because we have variants of a tag_description, we cannot choose 1 from the
# given candidates we have to first group the candidates, and then choose which
# group is most similar
# %%
from fuzzywuzzy import fuzz
# the purpose of this function is to group the strings that are similar to each other
# we need to form related groups of inputs
def group_similar_strings(obj_list, threshold=80):
@ -170,29 +54,16 @@ def group_similar_strings(obj_list, threshold=80):
# tuple is (idx, string)
if obj in processed_strings:
continue
# Find all strings similar to the current string above the threshold
similar_strings = [s for s in obj_list if s[1] != obj[1] and fuzz.ratio(obj[1], s[1]) >= threshold]
# Add the original string to the similar group
similar_group = [obj] + similar_strings
# Mark all similar strings as processed
processed_strings.update(similar_group)
# Add the group to the list of groups
groups.append(similar_group)
return groups
# Example usage
string_list = sample_df['tag_description'].to_list()
index_list = sample_df.index.to_list()
obj_list = list(zip(index_list, string_list))
groups = group_similar_strings(obj_list, threshold=90)
print(groups)
# %%
# this function takes in groups of related terms and create candidate entries
def make_candidates(groups):
candidates = []
@ -203,21 +74,6 @@ def make_candidates(groups):
candidates.append(id_of_tuple)
return candidates
# %%
test_candidates = make_candidates(groups)
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
test_candidates_mask[test_candidates] = True
# %%
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
# %%
# we need to make the cos_sim_matrix
# for that, we need to generate the embeddings of the ship_df (test embedding)
# and the train_df (train embeddin)
# we then use the selection function using the given mask to choose the most
# appropriate candidate
# the selection function takes in the full cos_sim_matrix then subsets the
# matrix according to the test_candidates_mask and train_candidates_mask that we
@ -241,21 +97,211 @@ def selection(cos_sim_matrix, source_mask, target_mask):
max_idx = np.argmax(y_scores)
max_score = y_scores[max_idx]
return max_idx, max_score
####################
# global level
# %%
# obtain the full mdm_list
data_path = '../../data_import/exports/data_mapping_mdm.csv'
full_df = pd.read_csv(data_path, skipinitialspace=True)
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
#####################
# fold level
def run_selection(fold):
# set the fold
# import test data
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
df = pd.read_csv(data_path, skipinitialspace=True)
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
# get target data
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
train_df = pd.read_csv(data_path, skipinitialspace=True)
# generate your embeddings
# checkpoint_directory defined at global level
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
# Use glob to find matching paths
# path is usually checkpoint_fold_1/checkpoint-<step number>
# we are guaranteed to save only 1 checkpoint from training
pattern = 'checkpoint-*'
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
# we can generate the train embeddings once and re-use for every ship
train_embedder = Embedder(input_df=train_df)
train_embeds = train_embedder.make_embedding(checkpoint_path)
# create global_answer array
# the purpose of this array is to track the classification state at the global
# level
global_answer = np.zeros(len(df), dtype=bool)
#############################
# ship level
# we have to split into per-ship analysis
ships_list = sorted(list(set(df['ships_idx'])))
for ship_idx in ships_list:
# ship_idx = 1001 # choose an example ship
ship_df = df[df['ships_idx'] == ship_idx]
# required to map local ship_answer array to global_answer array
map_local_index_to_global_index = ship_df.index.to_numpy()
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
# generate new embeddings for each ship
test_embedder = Embedder(input_df=ship_df)
test_embeds = test_embedder.make_embedding(checkpoint_path)
# generate the cosine sim matrix
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
##############################
# selection level
# The general idea:
# step 1: keep only pattern generations that belong to mdm list
# -> this removes totally wrong datasets that mapped to totally wrong things
# step 2: loop through the mdm list and isolate data in both train and test that
# belong to the same pattern class
# -> this is more tricky, because we have non-mdm mapping to correct classes
# -> so we have to find which candidate is most similar to the training data
# it is very tricky to keep track of classification across multiple stages so we
# will use a boolean answer list
# initialize the local answer list
ship_answer_list = np.ones(len(ship_df), dtype=bool)
###########
# STEP 1
# we want to loop through the generated class labels and find which ones match
# our pattern list
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
# we assign only those that are False to our answer list
# right now the 2 arrays are basically equal
ship_answer_list[~pattern_match_mask] = False
###########
# STEP 2
# we now go through each class found in our generated set
# we want to identify per-ship mdm classes
ship_predicted_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
# this function performs the selection given a class
# it takes in the cos_sim_matrix
# it returns the selection by mutating the answer_list
# it sets all relevant idxs to False initially, then sets the selected values to True
def selection_for_class(select_class, cos_sim_matrix, answer_list):
# separate the global variable from function variable
answer_list = answer_list.copy()
sample_df = ship_df[ship_df['p_pattern'] == select_class]
# we need to set all idx of chosen entries as False in answer_list
selected_idx_list = sample_df.index.to_list()
answer_list[selected_idx_list] = False
# basic assumption check
# group related inputs by description similarity
string_list = sample_df['tag_description'].to_list()
index_list = sample_df.index.to_list()
obj_list = list(zip(index_list, string_list))
# groups is a list of list, where each list is composed of a
# (idx, string) tuple
groups = group_similar_strings(obj_list, threshold=FUZZY_SIM_THRESHOLD)
# generate the masking arrays for both test and train embeddings
# we select a tuple from each group, and use that as a candidate for selection
test_candidates = make_candidates(groups)
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
test_candidates_mask[test_candidates] = True
# we make candidates to compare against in the data sharing the same class
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
# perform selection
# it returns the group index that is most likely
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
# %%
# after obtaining best group, we set all candidates of the group as True
# consolidate all idx's in the same group
chosen_group = groups[max_idx]
chosen_idx = [tuple[0] for tuple in chosen_group]
chosen_idx_list = [tuple[0] for tuple in chosen_group]
# %%
# before doing this, we have to use the max_score and evaluate if its close enough
THRESHOLD = 0.8
if max_score > THRESHOLD:
answer_list[chosen_idx] = True
answer_list[chosen_idx_list] = True
return answer_list
# we choose one mdm class
for select_class in ship_predicted_classes:
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
# we want to write back to global_answer
# first we convert local indices to global indices
local_indices = np.where(ship_answer_list)[0]
global_indices = map_local_index_to_global_index[local_indices]
global_answer[global_indices] = True
if DIAGNOSTIC:
# evaluation at per-ship level
y_true = ship_df['MDM'].to_list()
y_pred = ship_answer_list
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
y_true = df['MDM'].to_list()
y_pred = global_answer
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
print(f"tp: {tp}")
print(f"tn: {tn}")
print(f"fp: {fp}")
print(f"fn: {fn}")
# Compute metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
precision = precision_score(y_true, y_pred, average='macro')
recall = recall_score(y_true, y_pred, average='macro')
# Print the results
print(f'Accuracy: {accuracy:.5f}')
print(f'F1 Score: {f1:.5f}')
print(f'Precision: {precision:.5f}')
print(f'Recall: {recall:.5f}')
# %%
for fold in [1,2,3,4,5]:
print(f'Perform selection for fold {fold}')
run_selection(fold)
# %%

View File

@ -30,7 +30,7 @@ class BertEmbedder:
for i in range(0, len(input_texts), batch_size):
batch_texts = input_texts[i:i+batch_size]
# Tokenize the input text
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
input_ids = inputs.input_ids.to(self.device)
attention_mask = inputs.attention_mask.to(self.device)