Feat: tuned selection_with_pattern to perform better
This commit is contained in:
parent
7699201cb8
commit
96e7394c59
|
@ -1 +1,2 @@
|
||||||
__pycache__
|
__pycache__
|
||||||
|
output.txt
|
||||||
|
|
|
@ -1,56 +0,0 @@
|
||||||
|
|
||||||
********************************************************************************
|
|
||||||
Statistics for fold 1
|
|
||||||
tp: 1792
|
|
||||||
tn: 10533
|
|
||||||
fp: 428
|
|
||||||
fn: 321
|
|
||||||
fold: 1
|
|
||||||
accuracy: 0.9427107235735047
|
|
||||||
f1_score: 0.827140549273021
|
|
||||||
precision: 0.8072072072072072
|
|
||||||
recall: 0.8480832938949361
|
|
||||||
********************************************************************************
|
|
||||||
Statistics for fold 2
|
|
||||||
tp: 1875
|
|
||||||
tn: 8189
|
|
||||||
fp: 393
|
|
||||||
fn: 265
|
|
||||||
fold: 2
|
|
||||||
accuracy: 0.9386308524529006
|
|
||||||
f1_score: 0.8507259528130672
|
|
||||||
precision: 0.8267195767195767
|
|
||||||
recall: 0.8761682242990654
|
|
||||||
********************************************************************************
|
|
||||||
Statistics for fold 3
|
|
||||||
tp: 1831
|
|
||||||
tn: 7455
|
|
||||||
fp: 408
|
|
||||||
fn: 161
|
|
||||||
fold: 3
|
|
||||||
accuracy: 0.9422628107559614
|
|
||||||
f1_score: 0.8655164263767431
|
|
||||||
precision: 0.8177757927646271
|
|
||||||
recall: 0.9191767068273092
|
|
||||||
********************************************************************************
|
|
||||||
Statistics for fold 4
|
|
||||||
tp: 1909
|
|
||||||
tn: 12866
|
|
||||||
fp: 483
|
|
||||||
fn: 193
|
|
||||||
fold: 4
|
|
||||||
accuracy: 0.9562487864863116
|
|
||||||
f1_score: 0.8495772140631954
|
|
||||||
precision: 0.7980769230769231
|
|
||||||
recall: 0.9081826831588963
|
|
||||||
********************************************************************************
|
|
||||||
Statistics for fold 5
|
|
||||||
tp: 1928
|
|
||||||
tn: 10359
|
|
||||||
fp: 427
|
|
||||||
fn: 255
|
|
||||||
fold: 5
|
|
||||||
accuracy: 0.9474130619168787
|
|
||||||
f1_score: 0.8497135301895108
|
|
||||||
precision: 0.818683651804671
|
|
||||||
recall: 0.8831882730187814
|
|
|
@ -3,11 +3,11 @@ import os
|
||||||
import glob
|
import glob
|
||||||
|
|
||||||
# directory for checkpoints
|
# directory for checkpoints
|
||||||
checkpoint_directory = '../../train/baseline'
|
checkpoint_directory = '../../train/mapping_with_unit'
|
||||||
|
|
||||||
def select(fold):
|
def select(fold):
|
||||||
# import test data
|
# import test data
|
||||||
data_path = f"../../train/mapping/exports/result_group_{fold}.csv"
|
data_path = f"../../train/mapping_with_unit/mapping_prediction/exports/result_group_{fold}.csv"
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
# get target data
|
# get target data
|
||||||
|
@ -43,26 +43,6 @@ def select(fold):
|
||||||
|
|
||||||
df = data_mapping
|
df = data_mapping
|
||||||
|
|
||||||
# we can save the t5 generation output here
|
|
||||||
# df.to_parquet(f"exports/fold_{fold}/t5_output.parquet")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# condition1 = df['MDM']
|
|
||||||
# condition2 = df['p_MDM']
|
|
||||||
|
|
||||||
# condition_correct_thing = df['p_thing'] == df['thing']
|
|
||||||
# condition_correct_property = df['p_property'] == df['property']
|
|
||||||
# match = sum(condition1 & condition2)
|
|
||||||
# fn = sum(condition1 & ~condition2)
|
|
||||||
# prediction_mdm_correct = sum(condition_correct_thing & condition_correct_property & condition1)
|
|
||||||
|
|
||||||
# print("mdm match predicted mdm: ", match) # 56 - false negative
|
|
||||||
# print("mdm but not predicted mdm: ", fn) # 56 - false negative
|
|
||||||
# print("total mdm: ", sum(condition1)) # 2113
|
|
||||||
# print("total predicted mdm: ", sum(condition2)) # 6896 - a lot of false positives
|
|
||||||
# print("correct mdm predicted", prediction_mdm_correct)
|
|
||||||
|
|
||||||
|
|
||||||
# selection
|
# selection
|
||||||
###########################################
|
###########################################
|
||||||
|
|
|
@ -5,39 +5,18 @@ import glob
|
||||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from utils import BertEmbedder, cosine_similarity_chunked
|
from utils import BertEmbedder, cosine_similarity_chunked
|
||||||
|
from fuzzywuzzy import fuzz
|
||||||
|
|
||||||
|
##################
|
||||||
|
# global parameters
|
||||||
|
DIAGNOSTIC = False
|
||||||
|
THRESHOLD = 0.85
|
||||||
|
FUZZY_SIM_THRESHOLD=95
|
||||||
|
checkpoint_directory = "../../train/classification_bert_desc"
|
||||||
|
|
||||||
|
###################
|
||||||
# %%
|
# %%
|
||||||
# directory for checkpoints
|
# helper functions
|
||||||
checkpoint_directory = '../../train/mapping_pattern'
|
|
||||||
|
|
||||||
fold = 5
|
|
||||||
# import test data
|
|
||||||
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
|
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
# get target data
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
# processing to help with selection later
|
|
||||||
|
|
||||||
# %%
|
|
||||||
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# obtain the full mdm_list
|
|
||||||
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
|
||||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# we have to split into per-ship analysis
|
|
||||||
ships_list = sorted(list(set(df['ships_idx'])))
|
|
||||||
# %%
|
|
||||||
# for ship_idx in ships_list:
|
|
||||||
ship_idx = 1009 # choose an example ship
|
|
||||||
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
|
|
||||||
|
|
||||||
class Embedder():
|
class Embedder():
|
||||||
input_df: pd.DataFrame
|
input_df: pd.DataFrame
|
||||||
fold: int
|
fold: int
|
||||||
|
@ -65,101 +44,6 @@ class Embedder():
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
|
||||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
|
||||||
|
|
||||||
checkpoint_directory = "../../train/classification_bert"
|
|
||||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
|
||||||
# Use glob to find matching paths
|
|
||||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
|
||||||
# we are guaranteed to save only 1 checkpoint from training
|
|
||||||
pattern = 'checkpoint-*'
|
|
||||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
|
||||||
|
|
||||||
train_embedder = Embedder(input_df=train_df)
|
|
||||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
test_embedder = Embedder(input_df=ship_df)
|
|
||||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# test embeds are inputs since we are looking back at train data
|
|
||||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# The general idea:
|
|
||||||
# step 1: keep only pattern generations that belong to mdm list
|
|
||||||
# -> this removes totally wrong datasets that mapped to totally wrong things
|
|
||||||
# step 2: loop through the mdm list and isolate data in both train and test that
|
|
||||||
# belong to the same pattern class
|
|
||||||
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
|
||||||
# -> so we have to find which candidate is most similar to the training data
|
|
||||||
|
|
||||||
# it is very tricky to keep track of classification across multiple stages so we
|
|
||||||
# will use a boolean answer list
|
|
||||||
|
|
||||||
# %%
|
|
||||||
answer_list = np.ones(len(ship_df), dtype=bool)
|
|
||||||
|
|
||||||
##########################################
|
|
||||||
# %%
|
|
||||||
# STEP 1
|
|
||||||
# we want to loop through the the ship_df and find which ones match our full_mdm_list
|
|
||||||
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
|
|
||||||
# we assign only those that are False to our answer list
|
|
||||||
# right now the 2 arrays are basically equal
|
|
||||||
answer_list[~pattern_match_mask] = False
|
|
||||||
|
|
||||||
# %% TEMP
|
|
||||||
print('proportion belonging to mdm classes', sum(pattern_match_mask)/len(pattern_match_mask))
|
|
||||||
|
|
||||||
# %% TEMP
|
|
||||||
y_true = ship_df['MDM'].to_list()
|
|
||||||
y_pred = pattern_match_mask
|
|
||||||
|
|
||||||
# Compute metrics
|
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
|
||||||
print(f'Accuracy: {accuracy:.5f}')
|
|
||||||
|
|
||||||
# we can see that the accuracy is not good
|
|
||||||
# %%
|
|
||||||
#########################################
|
|
||||||
# STEP 2
|
|
||||||
# we want to go through each mdm class label
|
|
||||||
# but we do not want to make subsets of dataframes
|
|
||||||
# we will make heavy use of boolean masks
|
|
||||||
|
|
||||||
# we want to identify per-ship mdm classes
|
|
||||||
ship_mdm_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
|
|
||||||
|
|
||||||
# %%
|
|
||||||
len(ship_mdm_classes)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
for idx,select_class in enumerate(ship_mdm_classes):
|
|
||||||
print(idx, len(ship_df[ship_df['p_pattern'] == select_class]))
|
|
||||||
|
|
||||||
# %%
|
|
||||||
select_class = ship_mdm_classes[22]
|
|
||||||
sample_df = ship_df[ship_df['p_pattern'] == select_class]
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# we need to set all idx of chosen entries as False in answer_list
|
|
||||||
selected_idx_list = sample_df.index.to_list()
|
|
||||||
answer_list[selected_idx_list] = False
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# because we have variants of a tag_description, we cannot choose 1 from the
|
|
||||||
# given candidates we have to first group the candidates, and then choose which
|
|
||||||
# group is most similar
|
|
||||||
|
|
||||||
# %%
|
|
||||||
from fuzzywuzzy import fuzz
|
|
||||||
|
|
||||||
# the purpose of this function is to group the strings that are similar to each other
|
# the purpose of this function is to group the strings that are similar to each other
|
||||||
# we need to form related groups of inputs
|
# we need to form related groups of inputs
|
||||||
def group_similar_strings(obj_list, threshold=80):
|
def group_similar_strings(obj_list, threshold=80):
|
||||||
|
@ -170,29 +54,16 @@ def group_similar_strings(obj_list, threshold=80):
|
||||||
# tuple is (idx, string)
|
# tuple is (idx, string)
|
||||||
if obj in processed_strings:
|
if obj in processed_strings:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Find all strings similar to the current string above the threshold
|
# Find all strings similar to the current string above the threshold
|
||||||
similar_strings = [s for s in obj_list if s[1] != obj[1] and fuzz.ratio(obj[1], s[1]) >= threshold]
|
similar_strings = [s for s in obj_list if s[1] != obj[1] and fuzz.ratio(obj[1], s[1]) >= threshold]
|
||||||
|
|
||||||
# Add the original string to the similar group
|
# Add the original string to the similar group
|
||||||
similar_group = [obj] + similar_strings
|
similar_group = [obj] + similar_strings
|
||||||
|
|
||||||
# Mark all similar strings as processed
|
# Mark all similar strings as processed
|
||||||
processed_strings.update(similar_group)
|
processed_strings.update(similar_group)
|
||||||
|
|
||||||
# Add the group to the list of groups
|
# Add the group to the list of groups
|
||||||
groups.append(similar_group)
|
groups.append(similar_group)
|
||||||
|
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
# Example usage
|
|
||||||
string_list = sample_df['tag_description'].to_list()
|
|
||||||
index_list = sample_df.index.to_list()
|
|
||||||
obj_list = list(zip(index_list, string_list))
|
|
||||||
groups = group_similar_strings(obj_list, threshold=90)
|
|
||||||
print(groups)
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# this function takes in groups of related terms and create candidate entries
|
# this function takes in groups of related terms and create candidate entries
|
||||||
def make_candidates(groups):
|
def make_candidates(groups):
|
||||||
candidates = []
|
candidates = []
|
||||||
|
@ -203,21 +74,6 @@ def make_candidates(groups):
|
||||||
candidates.append(id_of_tuple)
|
candidates.append(id_of_tuple)
|
||||||
return candidates
|
return candidates
|
||||||
|
|
||||||
# %%
|
|
||||||
test_candidates = make_candidates(groups)
|
|
||||||
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
|
|
||||||
test_candidates_mask[test_candidates] = True
|
|
||||||
|
|
||||||
# %%
|
|
||||||
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
|
|
||||||
|
|
||||||
# %%
|
|
||||||
# we need to make the cos_sim_matrix
|
|
||||||
# for that, we need to generate the embeddings of the ship_df (test embedding)
|
|
||||||
# and the train_df (train embeddin)
|
|
||||||
|
|
||||||
# we then use the selection function using the given mask to choose the most
|
|
||||||
# appropriate candidate
|
|
||||||
|
|
||||||
# the selection function takes in the full cos_sim_matrix then subsets the
|
# the selection function takes in the full cos_sim_matrix then subsets the
|
||||||
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
||||||
|
@ -241,21 +97,211 @@ def selection(cos_sim_matrix, source_mask, target_mask):
|
||||||
max_idx = np.argmax(y_scores)
|
max_idx = np.argmax(y_scores)
|
||||||
max_score = y_scores[max_idx]
|
max_score = y_scores[max_idx]
|
||||||
|
|
||||||
|
|
||||||
return max_idx, max_score
|
return max_idx, max_score
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# global level
|
||||||
# %%
|
# %%
|
||||||
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
# obtain the full mdm_list
|
||||||
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
full_mdm_pattern_list = sorted(list((set(full_df['pattern']))))
|
||||||
|
|
||||||
|
|
||||||
|
#####################
|
||||||
|
# fold level
|
||||||
|
|
||||||
|
def run_selection(fold):
|
||||||
|
|
||||||
|
# set the fold
|
||||||
|
# import test data
|
||||||
|
data_path = f"../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
df['p_pattern'] = df['p_thing'] + " " + df['p_property']
|
||||||
|
|
||||||
|
# get target data
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# generate your embeddings
|
||||||
|
# checkpoint_directory defined at global level
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
# we can generate the train embeddings once and re-use for every ship
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
# create global_answer array
|
||||||
|
# the purpose of this array is to track the classification state at the global
|
||||||
|
# level
|
||||||
|
global_answer = np.zeros(len(df), dtype=bool)
|
||||||
|
|
||||||
|
|
||||||
|
#############################
|
||||||
|
# ship level
|
||||||
|
# we have to split into per-ship analysis
|
||||||
|
ships_list = sorted(list(set(df['ships_idx'])))
|
||||||
|
for ship_idx in ships_list:
|
||||||
|
# ship_idx = 1001 # choose an example ship
|
||||||
|
|
||||||
|
ship_df = df[df['ships_idx'] == ship_idx]
|
||||||
|
# required to map local ship_answer array to global_answer array
|
||||||
|
map_local_index_to_global_index = ship_df.index.to_numpy()
|
||||||
|
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
|
||||||
|
|
||||||
|
# generate new embeddings for each ship
|
||||||
|
test_embedder = Embedder(input_df=ship_df)
|
||||||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
# generate the cosine sim matrix
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||||||
|
|
||||||
|
##############################
|
||||||
|
# selection level
|
||||||
|
# The general idea:
|
||||||
|
# step 1: keep only pattern generations that belong to mdm list
|
||||||
|
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||||||
|
# step 2: loop through the mdm list and isolate data in both train and test that
|
||||||
|
# belong to the same pattern class
|
||||||
|
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||||||
|
# -> so we have to find which candidate is most similar to the training data
|
||||||
|
|
||||||
|
# it is very tricky to keep track of classification across multiple stages so we
|
||||||
|
# will use a boolean answer list
|
||||||
|
|
||||||
|
# initialize the local answer list
|
||||||
|
ship_answer_list = np.ones(len(ship_df), dtype=bool)
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 1
|
||||||
|
# we want to loop through the generated class labels and find which ones match
|
||||||
|
# our pattern list
|
||||||
|
|
||||||
|
pattern_match_mask = ship_df['p_pattern'].apply(lambda x: x in full_mdm_pattern_list).to_numpy()
|
||||||
|
# we assign only those that are False to our answer list
|
||||||
|
# right now the 2 arrays are basically equal
|
||||||
|
ship_answer_list[~pattern_match_mask] = False
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 2
|
||||||
|
# we now go through each class found in our generated set
|
||||||
|
|
||||||
|
# we want to identify per-ship mdm classes
|
||||||
|
ship_predicted_classes = sorted(set(ship_df['p_pattern'][pattern_match_mask].to_list()))
|
||||||
|
|
||||||
|
# this function performs the selection given a class
|
||||||
|
# it takes in the cos_sim_matrix
|
||||||
|
# it returns the selection by mutating the answer_list
|
||||||
|
# it sets all relevant idxs to False initially, then sets the selected values to True
|
||||||
|
def selection_for_class(select_class, cos_sim_matrix, answer_list):
|
||||||
|
|
||||||
|
# separate the global variable from function variable
|
||||||
|
answer_list = answer_list.copy()
|
||||||
|
sample_df = ship_df[ship_df['p_pattern'] == select_class]
|
||||||
|
|
||||||
|
# we need to set all idx of chosen entries as False in answer_list
|
||||||
|
selected_idx_list = sample_df.index.to_list()
|
||||||
|
answer_list[selected_idx_list] = False
|
||||||
|
|
||||||
|
# basic assumption check
|
||||||
|
|
||||||
|
# group related inputs by description similarity
|
||||||
|
string_list = sample_df['tag_description'].to_list()
|
||||||
|
index_list = sample_df.index.to_list()
|
||||||
|
obj_list = list(zip(index_list, string_list))
|
||||||
|
# groups is a list of list, where each list is composed of a
|
||||||
|
# (idx, string) tuple
|
||||||
|
groups = group_similar_strings(obj_list, threshold=FUZZY_SIM_THRESHOLD)
|
||||||
|
|
||||||
|
# generate the masking arrays for both test and train embeddings
|
||||||
|
# we select a tuple from each group, and use that as a candidate for selection
|
||||||
|
test_candidates = make_candidates(groups)
|
||||||
|
test_candidates_mask = np.zeros(len(ship_df), dtype=bool)
|
||||||
|
test_candidates_mask[test_candidates] = True
|
||||||
|
# we make candidates to compare against in the data sharing the same class
|
||||||
|
train_candidates_mask = (train_df['pattern'] == select_class).to_numpy()
|
||||||
|
|
||||||
|
# perform selection
|
||||||
|
# it returns the group index that is most likely
|
||||||
|
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||||||
|
|
||||||
|
# consolidate all idx's in the same group
|
||||||
|
chosen_group = groups[max_idx]
|
||||||
|
chosen_idx_list = [tuple[0] for tuple in chosen_group]
|
||||||
|
|
||||||
|
|
||||||
|
# before doing this, we have to use the max_score and evaluate if its close enough
|
||||||
|
if max_score > THRESHOLD:
|
||||||
|
answer_list[chosen_idx_list] = True
|
||||||
|
|
||||||
|
return answer_list
|
||||||
|
|
||||||
|
|
||||||
|
# we choose one mdm class
|
||||||
|
for select_class in ship_predicted_classes:
|
||||||
|
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
|
||||||
|
|
||||||
|
# we want to write back to global_answer
|
||||||
|
# first we convert local indices to global indices
|
||||||
|
local_indices = np.where(ship_answer_list)[0]
|
||||||
|
global_indices = map_local_index_to_global_index[local_indices]
|
||||||
|
global_answer[global_indices] = True
|
||||||
|
|
||||||
|
|
||||||
|
if DIAGNOSTIC:
|
||||||
|
# evaluation at per-ship level
|
||||||
|
y_true = ship_df['MDM'].to_list()
|
||||||
|
y_pred = ship_answer_list
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred, average='macro')
|
||||||
|
precision = precision_score(y_true, y_pred, average='macro')
|
||||||
|
recall = recall_score(y_true, y_pred, average='macro')
|
||||||
|
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}')
|
||||||
|
print(f'F1 Score: {f1:.5f}')
|
||||||
|
print(f'Precision: {precision:.5f}')
|
||||||
|
print(f'Recall: {recall:.5f}')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
y_true = df['MDM'].to_list()
|
||||||
|
y_pred = global_answer
|
||||||
|
|
||||||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||||
|
print(f"tp: {tp}")
|
||||||
|
print(f"tn: {tn}")
|
||||||
|
print(f"fp: {fp}")
|
||||||
|
print(f"fn: {fn}")
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred, average='macro')
|
||||||
|
precision = precision_score(y_true, y_pred, average='macro')
|
||||||
|
recall = recall_score(y_true, y_pred, average='macro')
|
||||||
|
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}')
|
||||||
|
print(f'F1 Score: {f1:.5f}')
|
||||||
|
print(f'Precision: {precision:.5f}')
|
||||||
|
print(f'Recall: {recall:.5f}')
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
# after obtaining best group, we set all candidates of the group as True
|
for fold in [1,2,3,4,5]:
|
||||||
chosen_group = groups[max_idx]
|
print(f'Perform selection for fold {fold}')
|
||||||
chosen_idx = [tuple[0] for tuple in chosen_group]
|
run_selection(fold)
|
||||||
|
|
||||||
# %%
|
|
||||||
# before doing this, we have to use the max_score and evaluate if its close enough
|
|
||||||
THRESHOLD = 0.8
|
|
||||||
if max_score > THRESHOLD:
|
|
||||||
answer_list[chosen_idx] = True
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
|
@ -30,7 +30,7 @@ class BertEmbedder:
|
||||||
for i in range(0, len(input_texts), batch_size):
|
for i in range(0, len(input_texts), batch_size):
|
||||||
batch_texts = input_texts[i:i+batch_size]
|
batch_texts = input_texts[i:i+batch_size]
|
||||||
# Tokenize the input text
|
# Tokenize the input text
|
||||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
|
||||||
input_ids = inputs.input_ids.to(self.device)
|
input_ids = inputs.input_ids.to(self.device)
|
||||||
attention_mask = inputs.attention_mask.to(self.device)
|
attention_mask = inputs.attention_mask.to(self.device)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue