Feat: added de_duplication post-processing method
This commit is contained in:
parent
8dba46ded6
commit
737c86bc2e
|
@ -0,0 +1,2 @@
|
||||||
|
exports
|
||||||
|
output.txt
|
|
@ -0,0 +1,81 @@
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# following code computes final mapping + classification accuracy
|
||||||
|
# %%
|
||||||
|
def run(fold):
|
||||||
|
data_path = f'exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
p_mdm = df['p_mdm']
|
||||||
|
|
||||||
|
data_path = f'../../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
actual_mdm = df['MDM']
|
||||||
|
|
||||||
|
thing_correctness = df['thing'] == df['p_thing']
|
||||||
|
property_correctness = df['property'] == df['p_property']
|
||||||
|
answer = thing_correctness & property_correctness
|
||||||
|
|
||||||
|
# if is non-MDM -> then should be unmapped
|
||||||
|
# if is MDM -> then should be mapped correctly
|
||||||
|
|
||||||
|
# out of correctly predicted relevant data, how many are mapped correctly?
|
||||||
|
correct_positive_mdm_and_map = sum(p_mdm & actual_mdm & answer)
|
||||||
|
|
||||||
|
# number of correctly predicted non-relevant data
|
||||||
|
correct_negative_mdm = sum(~(p_mdm) & ~(actual_mdm))
|
||||||
|
|
||||||
|
overall_correct = (correct_positive_mdm_and_map + correct_negative_mdm)/len(actual_mdm)
|
||||||
|
print(overall_correct)
|
||||||
|
# %%
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
run(fold)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# check for "duplicates" in each ship
|
||||||
|
# we want to enforce a unique mapping
|
||||||
|
fold = 1
|
||||||
|
|
||||||
|
data_path = f'exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
|
# get predicted mdm labels
|
||||||
|
p_mdm = df['p_mdm'].to_numpy()
|
||||||
|
predicted_mdm_mask = p_mdm.astype(bool)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# get the mapped data
|
||||||
|
data_path = f'../../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
df['mapping'] = df['p_thing'] + ' ' + df['p_property']
|
||||||
|
|
||||||
|
|
||||||
|
# get ship list
|
||||||
|
ship_list = sorted(list(set(df['ships_idx'])))
|
||||||
|
|
||||||
|
# assign ship
|
||||||
|
ship = ship_list[1]
|
||||||
|
|
||||||
|
ship_boolean_mask = df['ships_idx'] == ship
|
||||||
|
|
||||||
|
# isolate predicted mdm data of the ship
|
||||||
|
ship_predicted_mdm_mask = predicted_mdm_mask & ship_boolean_mask
|
||||||
|
|
||||||
|
mapping_list = df['mapping'][ship_predicted_mdm_mask].to_list()
|
||||||
|
|
||||||
|
mapping_count = {}
|
||||||
|
|
||||||
|
for mapping in mapping_list:
|
||||||
|
if mapping in mapping_count:
|
||||||
|
mapping_count[mapping] = mapping_count[mapping] + 1
|
||||||
|
else:
|
||||||
|
mapping_count[mapping] = 1
|
||||||
|
|
||||||
|
# print the mapping count
|
||||||
|
mapping_count
|
||||||
|
|
||||||
|
# %%
|
||||||
|
# we can take one of the elements that exceeded 1 mapping and check
|
||||||
|
df_ship = df[ship_predicted_mdm_mask]
|
||||||
|
df_ship[df_ship['mapping'] == 'GeneratorEngine2 RunningState']
|
||||||
|
# %%
|
|
@ -1,31 +1,51 @@
|
||||||
|
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Accuracy: 0.95174
|
tp: 1808
|
||||||
F1 Score: 0.90912
|
tn: 10692
|
||||||
Precision: 0.91788
|
fp: 269
|
||||||
Recall: 0.90092
|
fn: 305
|
||||||
|
Accuracy: 0.95610
|
||||||
|
F1 Score: 0.86301
|
||||||
|
Precision: 0.87049
|
||||||
|
Recall: 0.85566
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Accuracy: 0.95159
|
tp: 1932
|
||||||
F1 Score: 0.92593
|
tn: 8304
|
||||||
Precision: 0.91697
|
fp: 278
|
||||||
Recall: 0.93574
|
fn: 208
|
||||||
|
Accuracy: 0.95467
|
||||||
|
F1 Score: 0.88828
|
||||||
|
Precision: 0.87421
|
||||||
|
Recall: 0.90280
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Accuracy: 0.95373
|
tp: 1789
|
||||||
F1 Score: 0.93021
|
tn: 7613
|
||||||
Precision: 0.91935
|
fp: 250
|
||||||
Recall: 0.94233
|
fn: 203
|
||||||
|
Accuracy: 0.95403
|
||||||
|
F1 Score: 0.88762
|
||||||
|
Precision: 0.87739
|
||||||
|
Recall: 0.89809
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Accuracy: 0.96524
|
tp: 1967
|
||||||
F1 Score: 0.92902
|
tn: 12929
|
||||||
Precision: 0.91306
|
fp: 420
|
||||||
Recall: 0.94702
|
fn: 135
|
||||||
|
Accuracy: 0.96408
|
||||||
|
F1 Score: 0.87636
|
||||||
|
Precision: 0.82405
|
||||||
|
Recall: 0.93578
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Accuracy: 0.95643
|
tp: 1915
|
||||||
F1 Score: 0.92319
|
tn: 10381
|
||||||
Precision: 0.91793
|
fp: 405
|
||||||
Recall: 0.92869
|
fn: 268
|
||||||
|
Accuracy: 0.94811
|
||||||
|
F1 Score: 0.85054
|
||||||
|
Precision: 0.82543
|
||||||
|
Recall: 0.87723
|
||||||
|
|
|
@ -27,6 +27,9 @@ from tqdm import tqdm
|
||||||
|
|
||||||
torch.set_float32_matmul_precision('high')
|
torch.set_float32_matmul_precision('high')
|
||||||
|
|
||||||
|
|
||||||
|
BATCH_SIZE = 256
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -158,7 +161,6 @@ def test(fold):
|
||||||
actual_labels = []
|
actual_labels = []
|
||||||
|
|
||||||
|
|
||||||
BATCH_SIZE = 64
|
|
||||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||||
for batch in tqdm(dataloader):
|
for batch in tqdm(dataloader):
|
||||||
# Inference in batches
|
# Inference in batches
|
||||||
|
@ -181,6 +183,17 @@ def test(fold):
|
||||||
pred_labels.extend(predicted_class_ids)
|
pred_labels.extend(predicted_class_ids)
|
||||||
|
|
||||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||||
|
pred_labels = np.array(pred_labels, dtype=bool)
|
||||||
|
|
||||||
|
# append the mdm prediction to the test_df for analysis later
|
||||||
|
df_out = pd.DataFrame({
|
||||||
|
'p_mdm': pred_labels,
|
||||||
|
})
|
||||||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
df_export = pd.concat([test_df, df_out], axis=1)
|
||||||
|
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# %%
|
# %%
|
||||||
|
@ -190,15 +203,23 @@ def test(fold):
|
||||||
|
|
||||||
# Compute metrics
|
# Compute metrics
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
f1 = f1_score(y_true, y_pred, average='macro')
|
f1 = f1_score(y_true, y_pred)
|
||||||
precision = precision_score(y_true, y_pred, average='macro')
|
precision = precision_score(y_true, y_pred)
|
||||||
recall = recall_score(y_true, y_pred, average='macro')
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
cm = confusion_matrix(y_true, y_pred)
|
||||||
|
tn, fp, fn, tp = cm.ravel()
|
||||||
|
|
||||||
with open("output.txt", "a") as f:
|
with open("output.txt", "a") as f:
|
||||||
|
|
||||||
|
|
||||||
print('*' * 80, file=f)
|
print('*' * 80, file=f)
|
||||||
print(f'Fold: {fold}', file=f)
|
print(f'Fold: {fold}', file=f)
|
||||||
# Print the results
|
# Print the results
|
||||||
|
print(f"tp: {tp}", file=f)
|
||||||
|
print(f"tn: {tn}", file=f)
|
||||||
|
print(f"fp: {fp}", file=f)
|
||||||
|
print(f"fn: {fn}", file=f)
|
||||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||||
print(f'F1 Score: {f1:.5f}', file=f)
|
print(f'F1 Score: {f1:.5f}', file=f)
|
||||||
print(f'Precision: {precision:.5f}', file=f)
|
print(f'Precision: {precision:.5f}', file=f)
|
||||||
|
|
|
@ -104,8 +104,8 @@ def train(fold):
|
||||||
|
|
||||||
# prepare tokenizer
|
# prepare tokenizer
|
||||||
|
|
||||||
model_checkpoint = "distilbert/distilbert-base-uncased"
|
model_checkpoint = "distilbert/distilbert-base-cased"
|
||||||
# model_checkpoint = 'google-bert/bert-base-uncased'
|
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
# Define additional special tokens
|
# Define additional special tokens
|
||||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
@ -180,13 +180,13 @@ def train(fold):
|
||||||
# save_strategy="epoch",
|
# save_strategy="epoch",
|
||||||
load_best_model_at_end=False,
|
load_best_model_at_end=False,
|
||||||
learning_rate=1e-5,
|
learning_rate=1e-5,
|
||||||
per_device_train_batch_size=64,
|
per_device_train_batch_size=128,
|
||||||
per_device_eval_batch_size=64,
|
per_device_eval_batch_size=128,
|
||||||
auto_find_batch_size=False,
|
auto_find_batch_size=False,
|
||||||
ddp_find_unused_parameters=False,
|
ddp_find_unused_parameters=False,
|
||||||
weight_decay=0.01,
|
weight_decay=0.01,
|
||||||
save_total_limit=1,
|
save_total_limit=1,
|
||||||
num_train_epochs=40,
|
num_train_epochs=80,
|
||||||
bf16=True,
|
bf16=True,
|
||||||
push_to_hub=False,
|
push_to_hub=False,
|
||||||
remove_unused_columns=False,
|
remove_unused_columns=False,
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
output*
|
||||||
|
__pycache__
|
|
@ -0,0 +1,313 @@
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||||
|
import numpy as np
|
||||||
|
from utils import T5Embedder, BertEmbedder, cosine_similarity_chunked
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
##################
|
||||||
|
# global parameters
|
||||||
|
DIAGNOSTIC = False
|
||||||
|
BATCH_SIZE = 1024
|
||||||
|
|
||||||
|
###################
|
||||||
|
# helper functions
|
||||||
|
class Embedder():
|
||||||
|
input_df: pd.DataFrame
|
||||||
|
fold: int
|
||||||
|
|
||||||
|
def __init__(self, input_df):
|
||||||
|
self.input_df = input_df
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, checkpoint_path):
|
||||||
|
|
||||||
|
def generate_input_list(df):
|
||||||
|
input_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
element = f"{desc}{unit}{name}"
|
||||||
|
input_list.append(element)
|
||||||
|
return input_list
|
||||||
|
|
||||||
|
# prepare reference embed
|
||||||
|
train_data = list(generate_input_list(self.input_df))
|
||||||
|
# Define the directory and the pattern
|
||||||
|
embedder = T5Embedder(train_data, checkpoint_path)
|
||||||
|
# embedder = BertEmbedder(train_data, checkpoint_path)
|
||||||
|
embedder.make_embedding(batch_size=BATCH_SIZE)
|
||||||
|
return embedder.embeddings
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# the selection function takes in the full cos_sim_matrix then subsets the
|
||||||
|
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
||||||
|
# give it
|
||||||
|
# it returns the most likely source candidate index and score among the source
|
||||||
|
# candidate list
|
||||||
|
# we then map the local idx to the ship-level idx
|
||||||
|
def selection(cos_sim_matrix, source_mask, target_mask):
|
||||||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||||||
|
# except we are subsetting 2D matrix (row, column)
|
||||||
|
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
|
||||||
|
# we select top-k here
|
||||||
|
# Get the indices of the top-k maximum values along axis 1
|
||||||
|
top_k = 1
|
||||||
|
# returns a potential 2d matrix of which columns have the highest values
|
||||||
|
# top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||||
|
# this partial sorts and ensures we care only top_k are correctly sorted
|
||||||
|
top_k_indices = np.argpartition(subset_matrix, -top_k, axis=1)[:, -top_k:]
|
||||||
|
|
||||||
|
# Get the values of the top 5 maximum scores
|
||||||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||||
|
|
||||||
|
# Calculate the average of the top-k scores along axis 1
|
||||||
|
y_scores = np.mean(top_k_values, axis=1)
|
||||||
|
max_idx = np.argmax(y_scores)
|
||||||
|
max_score = y_scores[max_idx]
|
||||||
|
|
||||||
|
# convert boolean to indices
|
||||||
|
condition_indices = np.where(source_mask)[0]
|
||||||
|
max_idx = condition_indices[max_idx]
|
||||||
|
|
||||||
|
|
||||||
|
return max_idx, max_score
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# global level
|
||||||
|
# obtain the full mdm_list
|
||||||
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
|
||||||
|
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
|
||||||
|
|
||||||
|
|
||||||
|
#####################
|
||||||
|
# fold level
|
||||||
|
|
||||||
|
def run_selection(fold):
|
||||||
|
|
||||||
|
# set the fold
|
||||||
|
# import test data
|
||||||
|
# data_path = f"../binary_classifier/classification_prediction/exports/result_group_{fold}.csv"
|
||||||
|
data_path = f"../similarity_classifier/exports/result_group_{fold}.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
predicted_mdm = df['p_mdm'].to_numpy().astype(bool)
|
||||||
|
|
||||||
|
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
df['p_mdm'] = predicted_mdm
|
||||||
|
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
|
||||||
|
|
||||||
|
# get target data
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
|
||||||
|
|
||||||
|
# generate your embeddings
|
||||||
|
# checkpoint_directory defined at global level
|
||||||
|
# checkpoint_directory = "../../train/classification_bert_pattern_desc_unit"
|
||||||
|
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit_name"
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
# we can generate the train embeddings once and re-use for every ship
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
# generate new embeddings for each ship
|
||||||
|
test_embedder = Embedder(input_df=df)
|
||||||
|
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
# create global_answer array
|
||||||
|
# the purpose of this array is to track the classification state at the global
|
||||||
|
# level
|
||||||
|
global_answer = np.zeros(len(df), dtype=bool)
|
||||||
|
|
||||||
|
#############################
|
||||||
|
# ship level
|
||||||
|
# we have to split into per-ship analysis
|
||||||
|
ships_list = sorted(list(set(df['ships_idx'])))
|
||||||
|
|
||||||
|
for ship_idx in tqdm(ships_list):
|
||||||
|
# ship_df = df[df['ships_idx'] == ship_idx]
|
||||||
|
# required to map local ship_answer array to global_answer array
|
||||||
|
# map_local_index_to_global_index = ship_df.index.to_numpy()
|
||||||
|
|
||||||
|
# we want to subset the ship and only p_mdm values
|
||||||
|
ship_mask = df['ships_idx'] == ship_idx
|
||||||
|
p_mdm_mask = df['p_mdm']
|
||||||
|
map_local_index_to_global_index = np.where(ship_mask & p_mdm_mask)[0]
|
||||||
|
ship_df = df[ship_mask & p_mdm_mask].reset_index(drop=True)
|
||||||
|
|
||||||
|
# subset the test embeds
|
||||||
|
test_embeds = global_test_embeds[map_local_index_to_global_index]
|
||||||
|
|
||||||
|
# generate the cosine sim matrix for the ship level
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||||
|
|
||||||
|
##############################
|
||||||
|
# selection level
|
||||||
|
# The general idea:
|
||||||
|
# step 1: keep only pattern generations that belong to mdm list
|
||||||
|
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||||||
|
# step 2: loop through the mdm list and isolate data in both train and test that
|
||||||
|
# belong to the same pattern class
|
||||||
|
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||||||
|
# -> so we have to find which candidate is most similar to the training data
|
||||||
|
|
||||||
|
# it is very tricky to keep track of classification across multiple stages so we
|
||||||
|
# will use a boolean answer list to map answers back to the global answer list
|
||||||
|
|
||||||
|
# initialize the local answer list
|
||||||
|
ship_answer_list = np.ones(len(ship_df), dtype=bool)
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 1A: ensure that the predicted mapping labels are valid
|
||||||
|
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
|
||||||
|
pattern_match_mask = pattern_match_mask.astype(bool)
|
||||||
|
# anything not in the pattern_match_mask are hallucinations
|
||||||
|
# this has the same effect as setting any wrong generations as non-mdm
|
||||||
|
ship_answer_list[~pattern_match_mask] = False
|
||||||
|
|
||||||
|
# # STEP 1B: subset our de-duplication to use only predicted_mdm labels
|
||||||
|
# p_mdm_mask = ship_df['p_mdm']
|
||||||
|
# # assign false to any non p_mdm entries
|
||||||
|
# ship_answer_list[~p_mdm_mask] = False
|
||||||
|
# # modify pattern_match_mask to remove any non p_mdm values
|
||||||
|
# pattern_match_mask = pattern_match_mask & p_mdm_mask
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 2
|
||||||
|
# we now go through each class found in our generated set
|
||||||
|
|
||||||
|
# we want to identify per-ship mdm classes
|
||||||
|
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
|
||||||
|
|
||||||
|
# this function performs the selection given a class
|
||||||
|
# it takes in the cos_sim_matrix
|
||||||
|
# it returns the selection by mutating the answer_list
|
||||||
|
# it sets all relevant idxs to False initially, then sets the selected values to True
|
||||||
|
def selection_for_class(select_class, cos_sim_matrix, answer_list):
|
||||||
|
|
||||||
|
# create local copy of answer_list
|
||||||
|
ship_answer_list = answer_list.copy()
|
||||||
|
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
|
||||||
|
|
||||||
|
|
||||||
|
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
|
||||||
|
# selected_idx_list = sample_df.index.to_numpy()
|
||||||
|
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
|
||||||
|
|
||||||
|
# basic assumption check
|
||||||
|
|
||||||
|
# generate the masking arrays for both test and train embeddings
|
||||||
|
# we select a tuple from each group, and use that as a candidate for selection
|
||||||
|
test_candidates_mask = ship_df['p_mapping'] == select_class
|
||||||
|
# we make candidates to compare against in the data sharing the same class
|
||||||
|
train_candidates_mask = train_df['mapping'] == select_class
|
||||||
|
|
||||||
|
if sum(train_candidates_mask) == 0:
|
||||||
|
# it can be the case that the mdm-valid mapping class is not found in training data
|
||||||
|
# print("not found in training data", select_class)
|
||||||
|
ship_answer_list[selected_idx_list] = False
|
||||||
|
return ship_answer_list
|
||||||
|
|
||||||
|
# perform selection
|
||||||
|
# max_idx is the id
|
||||||
|
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||||||
|
|
||||||
|
|
||||||
|
# set the duplicate entries to False
|
||||||
|
ship_answer_list[selected_idx_list] = False
|
||||||
|
# then only set the one unique chosen value as True
|
||||||
|
ship_answer_list[max_idx] = True
|
||||||
|
|
||||||
|
return ship_answer_list
|
||||||
|
|
||||||
|
# we choose one mdm class
|
||||||
|
for select_class in ship_predicted_classes:
|
||||||
|
# this resulted in big improvement
|
||||||
|
if (sum(ship_df['p_mapping'] == select_class)) > 0:
|
||||||
|
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
|
||||||
|
|
||||||
|
# we want to write back to global_answer
|
||||||
|
# first we convert local indices to global indices
|
||||||
|
ship_local_indices = np.where(ship_answer_list)[0]
|
||||||
|
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
|
||||||
|
global_answer[ship_global_indices] = True
|
||||||
|
|
||||||
|
|
||||||
|
if DIAGNOSTIC:
|
||||||
|
# evaluation at per-ship level
|
||||||
|
y_true = ship_df['MDM'].to_list()
|
||||||
|
y_pred = ship_answer_list
|
||||||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||||
|
print(f"tp: {tp}")
|
||||||
|
print(f"tn: {tn}")
|
||||||
|
print(f"fp: {fp}")
|
||||||
|
print(f"fn: {fn}")
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred)
|
||||||
|
precision = precision_score(y_true, y_pred)
|
||||||
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}')
|
||||||
|
print(f'F1 Score: {f1:.5f}')
|
||||||
|
print(f'Precision: {precision:.5f}')
|
||||||
|
print(f'Recall: {recall:.5f}')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open("output.txt", "a") as f:
|
||||||
|
print(80 * '*', file=f)
|
||||||
|
print(f'Statistics for fold {fold}', file=f)
|
||||||
|
|
||||||
|
y_true = df['MDM'].to_list()
|
||||||
|
y_pred = global_answer
|
||||||
|
|
||||||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||||
|
print(f"tp: {tp}", file=f)
|
||||||
|
print(f"tn: {tn}", file=f)
|
||||||
|
print(f"fp: {fp}", file=f)
|
||||||
|
print(f"fn: {fn}", file=f)
|
||||||
|
|
||||||
|
# compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred)
|
||||||
|
precision = precision_score(y_true, y_pred)
|
||||||
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
# print the results
|
||||||
|
print(f'accuracy: {accuracy:.5f}', file=f)
|
||||||
|
print(f'f1 score: {f1:.5f}', file=f)
|
||||||
|
print(f'Precision: {precision:.5f}', file=f)
|
||||||
|
print(f'Recall: {recall:.5f}', file=f)
|
||||||
|
|
||||||
|
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(f'Perform selection for fold {fold}')
|
||||||
|
run_selection(fold)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
|
@ -0,0 +1,132 @@
|
||||||
|
import torch
|
||||||
|
from transformers import (
|
||||||
|
AutoTokenizer,
|
||||||
|
AutoModelForSequenceClassification,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
DataCollatorWithPadding,
|
||||||
|
)
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class BertEmbedder:
|
||||||
|
def __init__(self, input_texts, model_checkpoint):
|
||||||
|
# we need to generate the embedding from list of input strings
|
||||||
|
self.embeddings = []
|
||||||
|
self.inputs = input_texts
|
||||||
|
model_checkpoint = model_checkpoint
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
# device = "cpu"
|
||||||
|
model.to(self.device)
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, batch_size=64):
|
||||||
|
all_embeddings = self.embeddings
|
||||||
|
input_texts = self.inputs
|
||||||
|
|
||||||
|
for i in range(0, len(input_texts), batch_size):
|
||||||
|
batch_texts = input_texts[i:i+batch_size]
|
||||||
|
# Tokenize the input text
|
||||||
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
|
||||||
|
input_ids = inputs.input_ids.to(self.device)
|
||||||
|
attention_mask = inputs.attention_mask.to(self.device)
|
||||||
|
|
||||||
|
|
||||||
|
# Pass the input through the encoder and retrieve the embeddings
|
||||||
|
with torch.no_grad():
|
||||||
|
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||||
|
# get last layer
|
||||||
|
embeddings = encoder_outputs.hidden_states[-1]
|
||||||
|
# get cls token embedding
|
||||||
|
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||||
|
all_embeddings.append(cls_embeddings)
|
||||||
|
|
||||||
|
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||||
|
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||||
|
|
||||||
|
self.embeddings = all_embeddings
|
||||||
|
|
||||||
|
class T5Embedder:
|
||||||
|
def __init__(self, input_texts, model_checkpoint):
|
||||||
|
# we need to generate the embedding from list of input strings
|
||||||
|
self.embeddings = []
|
||||||
|
self.inputs = input_texts
|
||||||
|
model_checkpoint = model_checkpoint
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# add the additional special tokens to the tokenizer
|
||||||
|
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||||
|
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||||
|
# device = "cpu"
|
||||||
|
model.to(self.device)
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, batch_size=128):
|
||||||
|
all_embeddings = self.embeddings
|
||||||
|
input_texts = self.inputs
|
||||||
|
|
||||||
|
for i in range(0, len(input_texts), batch_size):
|
||||||
|
batch_texts = input_texts[i:i+batch_size]
|
||||||
|
# Tokenize the input text
|
||||||
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
||||||
|
input_ids = inputs.input_ids.to(self.device)
|
||||||
|
attention_mask = inputs.attention_mask.to(self.device)
|
||||||
|
|
||||||
|
|
||||||
|
# Pass the input through the encoder and retrieve the embeddings
|
||||||
|
with torch.no_grad():
|
||||||
|
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
|
||||||
|
embeddings = encoder_outputs.last_hidden_state
|
||||||
|
|
||||||
|
# Compute the mean pooling of the token embeddings
|
||||||
|
# mean_embedding = embeddings.mean(dim=1)
|
||||||
|
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
|
||||||
|
all_embeddings.append(mean_embedding)
|
||||||
|
|
||||||
|
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||||
|
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||||
|
|
||||||
|
self.embeddings = all_embeddings
|
||||||
|
|
||||||
|
|
||||||
|
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||||
|
device = 'cuda'
|
||||||
|
batch1_size = batch1.size(0)
|
||||||
|
batch2_size = batch2.size(0)
|
||||||
|
batch2.to(device)
|
||||||
|
|
||||||
|
# Prepare an empty tensor to store results
|
||||||
|
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||||
|
|
||||||
|
# Process batch1 in chunks
|
||||||
|
for i in range(0, batch1_size, chunk_size):
|
||||||
|
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||||
|
|
||||||
|
batch1_chunk.to(device)
|
||||||
|
# Expand batch1 chunk and entire batch2 for comparison
|
||||||
|
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||||
|
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||||
|
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||||
|
|
||||||
|
|
||||||
|
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||||
|
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||||
|
|
||||||
|
# Compute cosine similarity by matrix multiplication and normalizing
|
||||||
|
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||||
|
|
||||||
|
# Store the results in the appropriate part of the final tensor
|
||||||
|
cos_sim[i:i + chunk_size] = sim_chunk
|
||||||
|
|
||||||
|
return cos_sim
|
||||||
|
|
|
@ -1,2 +1 @@
|
||||||
__pycache__
|
__pycache__
|
||||||
output.txt
|
|
|
@ -0,0 +1,41 @@
|
||||||
|
|
||||||
|
tp: 1738
|
||||||
|
tn: 10744
|
||||||
|
fp: 217
|
||||||
|
fn: 375
|
||||||
|
accuracy: 0.95472
|
||||||
|
f1 score: 0.85447
|
||||||
|
Precision: 0.88900
|
||||||
|
Recall: 0.82253
|
||||||
|
tp: 1794
|
||||||
|
tn: 8302
|
||||||
|
fp: 280
|
||||||
|
fn: 346
|
||||||
|
accuracy: 0.94162
|
||||||
|
f1 score: 0.85145
|
||||||
|
Precision: 0.86500
|
||||||
|
Recall: 0.83832
|
||||||
|
tp: 1755
|
||||||
|
tn: 7598
|
||||||
|
fp: 265
|
||||||
|
fn: 237
|
||||||
|
accuracy: 0.94906
|
||||||
|
f1 score: 0.87488
|
||||||
|
Precision: 0.86881
|
||||||
|
Recall: 0.88102
|
||||||
|
tp: 1911
|
||||||
|
tn: 13079
|
||||||
|
fp: 270
|
||||||
|
fn: 191
|
||||||
|
accuracy: 0.97016
|
||||||
|
f1 score: 0.89237
|
||||||
|
Precision: 0.87620
|
||||||
|
Recall: 0.90913
|
||||||
|
tp: 1826
|
||||||
|
tn: 10540
|
||||||
|
fp: 246
|
||||||
|
fn: 357
|
||||||
|
accuracy: 0.95350
|
||||||
|
f1 score: 0.85828
|
||||||
|
Precision: 0.88127
|
||||||
|
Recall: 0.83646
|
|
@ -0,0 +1,299 @@
|
||||||
|
# %%
|
||||||
|
import pandas as pd
|
||||||
|
import os
|
||||||
|
import glob
|
||||||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||||
|
import numpy as np
|
||||||
|
from utils import T5Embedder, BertEmbedder, cosine_similarity_chunked
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
##################
|
||||||
|
# global parameters
|
||||||
|
DIAGNOSTIC = False
|
||||||
|
THRESHOLD = 0.95
|
||||||
|
BATCH_SIZE = 1024
|
||||||
|
|
||||||
|
###################
|
||||||
|
# helper functions
|
||||||
|
class Embedder():
|
||||||
|
input_df: pd.DataFrame
|
||||||
|
fold: int
|
||||||
|
|
||||||
|
def __init__(self, input_df):
|
||||||
|
self.input_df = input_df
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, checkpoint_path):
|
||||||
|
|
||||||
|
def generate_input_list(df):
|
||||||
|
input_list = []
|
||||||
|
for _, row in df.iterrows():
|
||||||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
|
element = f"{desc}{unit}{name}"
|
||||||
|
input_list.append(element)
|
||||||
|
return input_list
|
||||||
|
|
||||||
|
# prepare reference embed
|
||||||
|
train_data = list(generate_input_list(self.input_df))
|
||||||
|
# Define the directory and the pattern
|
||||||
|
embedder = T5Embedder(train_data, checkpoint_path)
|
||||||
|
# embedder = BertEmbedder(train_data, checkpoint_path)
|
||||||
|
embedder.make_embedding(batch_size=BATCH_SIZE)
|
||||||
|
return embedder.embeddings
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# the selection function takes in the full cos_sim_matrix then subsets the
|
||||||
|
# matrix according to the test_candidates_mask and train_candidates_mask that we
|
||||||
|
# give it
|
||||||
|
# it returns the most likely source candidate index and score among the source
|
||||||
|
# candidate list
|
||||||
|
# we then map the local idx to the ship-level idx
|
||||||
|
def selection(cos_sim_matrix, source_mask, target_mask):
|
||||||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||||||
|
# except we are subsetting 2D matrix (row, column)
|
||||||
|
subset_matrix = cos_sim_matrix[np.ix_(source_mask, target_mask)]
|
||||||
|
# we select top-k here
|
||||||
|
# Get the indices of the top-k maximum values along axis 1
|
||||||
|
top_k = 1
|
||||||
|
# returns a potential 2d matrix of which columns have the highest values
|
||||||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||||
|
|
||||||
|
# Get the values of the top 5 maximum scores
|
||||||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||||
|
|
||||||
|
# Calculate the average of the top-k scores along axis 1
|
||||||
|
y_scores = np.mean(top_k_values, axis=1)
|
||||||
|
max_idx = np.argmax(y_scores)
|
||||||
|
max_score = y_scores[max_idx]
|
||||||
|
|
||||||
|
# convert boolean to indices
|
||||||
|
condition_indices = np.where(source_mask)[0]
|
||||||
|
max_idx = condition_indices[max_idx]
|
||||||
|
|
||||||
|
|
||||||
|
return max_idx, max_score
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
####################
|
||||||
|
# global level
|
||||||
|
# obtain the full mdm_list
|
||||||
|
data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
full_df['mapping'] = full_df['thing'] + ' ' + full_df['property']
|
||||||
|
full_mdm_mapping_list = sorted(list((set(full_df['mapping']))))
|
||||||
|
|
||||||
|
|
||||||
|
#####################
|
||||||
|
# fold level
|
||||||
|
|
||||||
|
def run_selection(fold):
|
||||||
|
|
||||||
|
# set the fold
|
||||||
|
# import test data
|
||||||
|
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
|
||||||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
# df['p_pattern'] = df['p_thing'] + " " + df['p_property']
|
||||||
|
df['p_mapping'] = df['p_thing'] + " " + df['p_property']
|
||||||
|
|
||||||
|
# get target data
|
||||||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
train_df['mapping'] = train_df['thing'] + " " + train_df['property']
|
||||||
|
|
||||||
|
# generate your embeddings
|
||||||
|
# checkpoint_directory defined at global level
|
||||||
|
# checkpoint_directory = "../../train/classification_bert_pattern_desc_unit"
|
||||||
|
checkpoint_directory = "../../train/mapping_t5_complete_desc_unit_name"
|
||||||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||||
|
# Use glob to find matching paths
|
||||||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||||
|
# we are guaranteed to save only 1 checkpoint from training
|
||||||
|
pattern = 'checkpoint-*'
|
||||||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||||
|
|
||||||
|
# we can generate the train embeddings once and re-use for every ship
|
||||||
|
train_embedder = Embedder(input_df=train_df)
|
||||||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
# generate new embeddings for each ship
|
||||||
|
test_embedder = Embedder(input_df=df)
|
||||||
|
global_test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||||
|
|
||||||
|
|
||||||
|
# create global_answer array
|
||||||
|
# the purpose of this array is to track the classification state at the global
|
||||||
|
# level
|
||||||
|
global_answer = np.zeros(len(df), dtype=bool)
|
||||||
|
|
||||||
|
#############################
|
||||||
|
# ship level
|
||||||
|
# we have to split into per-ship analysis
|
||||||
|
ships_list = sorted(list(set(df['ships_idx'])))
|
||||||
|
|
||||||
|
for ship_idx in tqdm(ships_list):
|
||||||
|
# ship_df = df[df['ships_idx'] == ship_idx]
|
||||||
|
# required to map local ship_answer array to global_answer array
|
||||||
|
# map_local_index_to_global_index = ship_df.index.to_numpy()
|
||||||
|
map_local_index_to_global_index = np.where(df['ships_idx'] == ship_idx)[0]
|
||||||
|
ship_df = df[df['ships_idx'] == ship_idx].reset_index(drop=True)
|
||||||
|
|
||||||
|
# subset the test embeds
|
||||||
|
test_embeds = global_test_embeds[map_local_index_to_global_index]
|
||||||
|
|
||||||
|
# generate the cosine sim matrix for the ship level
|
||||||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||||
|
|
||||||
|
##############################
|
||||||
|
# selection level
|
||||||
|
# The general idea:
|
||||||
|
# step 1: keep only pattern generations that belong to mdm list
|
||||||
|
# -> this removes totally wrong datasets that mapped to totally wrong things
|
||||||
|
# step 2: loop through the mdm list and isolate data in both train and test that
|
||||||
|
# belong to the same pattern class
|
||||||
|
# -> this is more tricky, because we have non-mdm mapping to correct classes
|
||||||
|
# -> so we have to find which candidate is most similar to the training data
|
||||||
|
|
||||||
|
# it is very tricky to keep track of classification across multiple stages so we
|
||||||
|
# will use a boolean answer list to map answers back to the global answer list
|
||||||
|
|
||||||
|
# initialize the local answer list
|
||||||
|
ship_answer_list = np.ones(len(ship_df), dtype=bool)
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 1
|
||||||
|
# we want to loop through the generated class labels and find which ones match
|
||||||
|
# our pattern list
|
||||||
|
|
||||||
|
pattern_match_mask = ship_df['p_mapping'].apply(lambda x: x in full_mdm_mapping_list).to_numpy()
|
||||||
|
pattern_match_mask = pattern_match_mask.astype(bool)
|
||||||
|
# anything not in the pattern_match_mask are hallucinations
|
||||||
|
# this has the same effect as setting any wrong generations as non-mdm
|
||||||
|
ship_answer_list[~pattern_match_mask] = False
|
||||||
|
|
||||||
|
###########
|
||||||
|
# STEP 2
|
||||||
|
# we now go through each class found in our generated set
|
||||||
|
|
||||||
|
# we want to identify per-ship mdm classes
|
||||||
|
ship_predicted_classes = sorted(set(ship_df['p_mapping'][pattern_match_mask].to_list()))
|
||||||
|
|
||||||
|
# this function performs the selection given a class
|
||||||
|
# it takes in the cos_sim_matrix
|
||||||
|
# it returns the selection by mutating the answer_list
|
||||||
|
# it sets all relevant idxs to False initially, then sets the selected values to True
|
||||||
|
def selection_for_class(select_class, cos_sim_matrix, answer_list):
|
||||||
|
|
||||||
|
# create local copy of answer_list
|
||||||
|
ship_answer_list = answer_list.copy()
|
||||||
|
# sample_df = ship_df[ship_df['p_mapping'] == select_class]
|
||||||
|
|
||||||
|
|
||||||
|
# we need to set all idx of chosen entries as False in answer_list -> assume wrong by default
|
||||||
|
# selected_idx_list = sample_df.index.to_numpy()
|
||||||
|
selected_idx_list = np.where(ship_df['p_mapping'] == select_class)[0]
|
||||||
|
|
||||||
|
# basic assumption check
|
||||||
|
|
||||||
|
# generate the masking arrays for both test and train embeddings
|
||||||
|
# we select a tuple from each group, and use that as a candidate for selection
|
||||||
|
test_candidates_mask = ship_df['p_mapping'] == select_class
|
||||||
|
# we make candidates to compare against in the data sharing the same class
|
||||||
|
train_candidates_mask = train_df['mapping'] == select_class
|
||||||
|
|
||||||
|
if sum(train_candidates_mask) == 0:
|
||||||
|
# it can be the case that the mdm-valid mapping class is not found in training data
|
||||||
|
# print("not found in training data", select_class)
|
||||||
|
ship_answer_list[selected_idx_list] = False
|
||||||
|
return ship_answer_list
|
||||||
|
|
||||||
|
# perform selection
|
||||||
|
# max_idx is the id
|
||||||
|
max_idx, max_score = selection(cos_sim_matrix, test_candidates_mask, train_candidates_mask)
|
||||||
|
|
||||||
|
|
||||||
|
# set the duplicate entries to False
|
||||||
|
ship_answer_list[selected_idx_list] = False
|
||||||
|
# before doing this, we have to use the max_score and evaluate if its close enough
|
||||||
|
if max_score > THRESHOLD:
|
||||||
|
ship_answer_list[max_idx] = True
|
||||||
|
|
||||||
|
return ship_answer_list
|
||||||
|
|
||||||
|
# we choose one mdm class
|
||||||
|
for select_class in ship_predicted_classes:
|
||||||
|
# this resulted in big improvement
|
||||||
|
if (sum(ship_df['p_mapping'] == select_class)) > 0:
|
||||||
|
ship_answer_list = selection_for_class(select_class, cos_sim_matrix, ship_answer_list)
|
||||||
|
|
||||||
|
# we want to write back to global_answer
|
||||||
|
# first we convert local indices to global indices
|
||||||
|
ship_local_indices = np.where(ship_answer_list)[0]
|
||||||
|
ship_global_indices = map_local_index_to_global_index[ship_local_indices]
|
||||||
|
global_answer[ship_global_indices] = True
|
||||||
|
|
||||||
|
|
||||||
|
if DIAGNOSTIC:
|
||||||
|
# evaluation at per-ship level
|
||||||
|
y_true = ship_df['MDM'].to_list()
|
||||||
|
y_pred = ship_answer_list
|
||||||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||||
|
print(f"tp: {tp}")
|
||||||
|
print(f"tn: {tn}")
|
||||||
|
print(f"fp: {fp}")
|
||||||
|
print(f"fn: {fn}")
|
||||||
|
|
||||||
|
# Compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred)
|
||||||
|
precision = precision_score(y_true, y_pred)
|
||||||
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
# Print the results
|
||||||
|
print(f'Accuracy: {accuracy:.5f}')
|
||||||
|
print(f'F1 Score: {f1:.5f}')
|
||||||
|
print(f'Precision: {precision:.5f}')
|
||||||
|
print(f'Recall: {recall:.5f}')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
with open("output.txt", "a") as f:
|
||||||
|
print(80 * '*', file=f)
|
||||||
|
print(f'Statistics for fold {fold}', file=f)
|
||||||
|
|
||||||
|
y_true = df['MDM'].to_list()
|
||||||
|
y_pred = global_answer
|
||||||
|
|
||||||
|
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
|
||||||
|
print(f"tp: {tp}", file=f)
|
||||||
|
print(f"tn: {tn}", file=f)
|
||||||
|
print(f"fp: {fp}", file=f)
|
||||||
|
print(f"fn: {fn}", file=f)
|
||||||
|
|
||||||
|
# compute metrics
|
||||||
|
accuracy = accuracy_score(y_true, y_pred)
|
||||||
|
f1 = f1_score(y_true, y_pred)
|
||||||
|
precision = precision_score(y_true, y_pred)
|
||||||
|
recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
|
# print the results
|
||||||
|
print(f'accuracy: {accuracy:.5f}', file=f)
|
||||||
|
print(f'f1 score: {f1:.5f}', file=f)
|
||||||
|
print(f'Precision: {precision:.5f}', file=f)
|
||||||
|
print(f'Recall: {recall:.5f}', file=f)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# reset file before writing to it
|
||||||
|
with open("output.txt", "w") as f:
|
||||||
|
print('', file=f)
|
||||||
|
|
||||||
|
|
||||||
|
# %%
|
||||||
|
for fold in [1,2,3,4,5]:
|
||||||
|
print(f'Perform selection for fold {fold}')
|
||||||
|
run_selection(fold)
|
|
@ -1,12 +1,56 @@
|
||||||
import torch
|
import torch
|
||||||
from tqdm import tqdm
|
from transformers import (
|
||||||
from transformers import AutoTokenizer
|
AutoTokenizer,
|
||||||
from transformers import AutoModelForSeq2SeqLM
|
AutoModelForSequenceClassification,
|
||||||
|
AutoModelForSeq2SeqLM,
|
||||||
|
DataCollatorWithPadding,
|
||||||
|
)
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class Retriever:
|
class BertEmbedder:
|
||||||
|
def __init__(self, input_texts, model_checkpoint):
|
||||||
|
# we need to generate the embedding from list of input strings
|
||||||
|
self.embeddings = []
|
||||||
|
self.inputs = input_texts
|
||||||
|
model_checkpoint = model_checkpoint
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||||
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
# device = "cpu"
|
||||||
|
model.to(self.device)
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
def make_embedding(self, batch_size=64):
|
||||||
|
all_embeddings = self.embeddings
|
||||||
|
input_texts = self.inputs
|
||||||
|
|
||||||
|
for i in range(0, len(input_texts), batch_size):
|
||||||
|
batch_texts = input_texts[i:i+batch_size]
|
||||||
|
# Tokenize the input text
|
||||||
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=120)
|
||||||
|
input_ids = inputs.input_ids.to(self.device)
|
||||||
|
attention_mask = inputs.attention_mask.to(self.device)
|
||||||
|
|
||||||
|
|
||||||
|
# Pass the input through the encoder and retrieve the embeddings
|
||||||
|
with torch.no_grad():
|
||||||
|
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||||
|
# get last layer
|
||||||
|
embeddings = encoder_outputs.hidden_states[-1]
|
||||||
|
# get cls token embedding
|
||||||
|
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||||
|
all_embeddings.append(cls_embeddings)
|
||||||
|
|
||||||
|
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||||
|
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||||
|
|
||||||
|
self.embeddings = all_embeddings
|
||||||
|
|
||||||
|
class T5Embedder:
|
||||||
def __init__(self, input_texts, model_checkpoint):
|
def __init__(self, input_texts, model_checkpoint):
|
||||||
# we need to generate the embedding from list of input strings
|
# we need to generate the embedding from list of input strings
|
||||||
self.embeddings = []
|
self.embeddings = []
|
||||||
|
@ -14,7 +58,7 @@ class Retriever:
|
||||||
model_checkpoint = model_checkpoint
|
model_checkpoint = model_checkpoint
|
||||||
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
|
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
# define additional special tokens
|
# define additional special tokens
|
||||||
additional_special_tokens = ["<thing_start>", "<thing_end>", "<property_start>", "<property_end>", "<name>", "<desc>", "<sig>", "<unit>", "<data_type>"]
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
# add the additional special tokens to the tokenizer
|
# add the additional special tokens to the tokenizer
|
||||||
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
@ -27,7 +71,7 @@ class Retriever:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def make_mean_embedding(self, batch_size=32):
|
def make_embedding(self, batch_size=128):
|
||||||
all_embeddings = self.embeddings
|
all_embeddings = self.embeddings
|
||||||
input_texts = self.inputs
|
input_texts = self.inputs
|
||||||
|
|
||||||
|
@ -54,6 +98,7 @@ class Retriever:
|
||||||
|
|
||||||
self.embeddings = all_embeddings
|
self.embeddings = all_embeddings
|
||||||
|
|
||||||
|
|
||||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||||
device = 'cuda'
|
device = 'cuda'
|
||||||
batch1_size = batch1.size(0)
|
batch1_size = batch1.size(0)
|
||||||
|
|
|
@ -0,0 +1,2 @@
|
||||||
|
__pycache__
|
||||||
|
output.txt
|
|
@ -1,13 +1,14 @@
|
||||||
|
# %%
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import os
|
import os
|
||||||
import glob
|
import glob
|
||||||
|
|
||||||
# directory for checkpoints
|
# directory for checkpoints
|
||||||
checkpoint_directory = '../../train/mapping_with_unit'
|
checkpoint_directory = '../../train/mapping_t5_complete_desc_unit_name'
|
||||||
|
|
||||||
def select(fold):
|
def select(fold):
|
||||||
# import test data
|
# import test data
|
||||||
data_path = f"../../train/mapping_with_unit/mapping_prediction/exports/result_group_{fold}.csv"
|
data_path = f"../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv"
|
||||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||||
|
|
||||||
# get target data
|
# get target data
|
||||||
|
@ -91,3 +92,5 @@ with open("output.txt", "w") as f:
|
||||||
|
|
||||||
for fold in [1,2,3,4,5]:
|
for fold in [1,2,3,4,5]:
|
||||||
select(fold)
|
select(fold)
|
||||||
|
|
||||||
|
# %%
|
|
@ -4,6 +4,12 @@ from typing import List
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from utils import Retriever, cosine_similarity_chunked
|
from utils import Retriever, cosine_similarity_chunked
|
||||||
|
|
||||||
|
|
||||||
|
# global parameters
|
||||||
|
THRESHOLD = 0.95
|
||||||
|
BATCH_SIZE = 512
|
||||||
|
|
||||||
|
#
|
||||||
class Selector():
|
class Selector():
|
||||||
input_df: pd.DataFrame
|
input_df: pd.DataFrame
|
||||||
reference_df: pd.DataFrame
|
reference_df: pd.DataFrame
|
||||||
|
@ -22,10 +28,10 @@ class Selector():
|
||||||
def generate_input_list(df):
|
def generate_input_list(df):
|
||||||
input_list = []
|
input_list = []
|
||||||
for _, row in df.iterrows():
|
for _, row in df.iterrows():
|
||||||
# name = f"<NAME>{row['tag_name']}<NAME>"
|
name = f"<NAME>{row['tag_name']}<NAME>"
|
||||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||||
# element = f"{name}{desc}"
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||||
element = f"{desc}"
|
element = f"{name}{desc}{unit}"
|
||||||
input_list.append(element)
|
input_list.append(element)
|
||||||
return input_list
|
return input_list
|
||||||
|
|
||||||
|
@ -58,13 +64,13 @@ class Selector():
|
||||||
train_data = list(generate_input_list(self.reference_df))
|
train_data = list(generate_input_list(self.reference_df))
|
||||||
# Define the directory and the pattern
|
# Define the directory and the pattern
|
||||||
retriever_train = Retriever(train_data, checkpoint_path)
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||||||
retriever_train.make_mean_embedding(batch_size=64)
|
retriever_train.make_mean_embedding(batch_size=BATCH_SIZE)
|
||||||
train_embed = retriever_train.embeddings
|
train_embed = retriever_train.embeddings
|
||||||
|
|
||||||
# take the inputs for df_sub
|
# take the inputs for df_sub
|
||||||
test_data = list(generate_input_list(self.input_df))
|
test_data = list(generate_input_list(self.input_df))
|
||||||
retriever_test = Retriever(test_data, checkpoint_path)
|
retriever_test = Retriever(test_data, checkpoint_path)
|
||||||
retriever_test.make_mean_embedding(batch_size=64)
|
retriever_test.make_mean_embedding(batch_size=BATCH_SIZE)
|
||||||
test_embed = retriever_test.embeddings
|
test_embed = retriever_test.embeddings
|
||||||
|
|
||||||
|
|
||||||
|
@ -75,7 +81,6 @@ class Selector():
|
||||||
tn_accumulate = 0
|
tn_accumulate = 0
|
||||||
fp_accumulate = 0
|
fp_accumulate = 0
|
||||||
fn_accumulate = 0
|
fn_accumulate = 0
|
||||||
THRESHOLD = 0.9
|
|
||||||
for ship_idx in self.ships_list:
|
for ship_idx in self.ships_list:
|
||||||
print(ship_idx)
|
print(ship_idx)
|
||||||
# we select a ship and select only data exhibiting MDM pattern in the predictions
|
# we select a ship and select only data exhibiting MDM pattern in the predictions
|
||||||
|
@ -119,6 +124,7 @@ class Selector():
|
||||||
all_idx_list.append(max_idx)
|
all_idx_list.append(max_idx)
|
||||||
similarity_score.append(max_score)
|
similarity_score.append(max_score)
|
||||||
# implement thresholding
|
# implement thresholding
|
||||||
|
print(max_score)
|
||||||
if max_score > THRESHOLD:
|
if max_score > THRESHOLD:
|
||||||
selected_idx_list.append(max_idx)
|
selected_idx_list.append(max_idx)
|
||||||
|
|
|
@ -0,0 +1,87 @@
|
||||||
|
import torch
|
||||||
|
from tqdm import tqdm
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from transformers import AutoModelForSeq2SeqLM
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
BATCH_SIZE = 128
|
||||||
|
|
||||||
|
class Retriever:
|
||||||
|
def __init__(self, input_texts, model_checkpoint):
|
||||||
|
# we need to generate the embedding from list of input strings
|
||||||
|
self.embeddings = []
|
||||||
|
self.inputs = input_texts
|
||||||
|
model_checkpoint = model_checkpoint
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained("t5-base", return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||||
|
# define additional special tokens
|
||||||
|
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||||
|
# add the additional special tokens to the tokenizer
|
||||||
|
self.tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||||
|
|
||||||
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
|
||||||
|
self.device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
||||||
|
# device = "cpu"
|
||||||
|
model.to(self.device)
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def make_mean_embedding(self, batch_size=BATCH_SIZE):
|
||||||
|
all_embeddings = self.embeddings
|
||||||
|
input_texts = self.inputs
|
||||||
|
|
||||||
|
for i in range(0, len(input_texts), batch_size):
|
||||||
|
batch_texts = input_texts[i:i+batch_size]
|
||||||
|
# Tokenize the input text
|
||||||
|
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
||||||
|
input_ids = inputs.input_ids.to(self.device)
|
||||||
|
attention_mask = inputs.attention_mask.to(self.device)
|
||||||
|
|
||||||
|
|
||||||
|
# Pass the input through the encoder and retrieve the embeddings
|
||||||
|
with torch.no_grad():
|
||||||
|
encoder_outputs = self.model.encoder(input_ids, attention_mask=attention_mask)
|
||||||
|
embeddings = encoder_outputs.last_hidden_state
|
||||||
|
|
||||||
|
# Compute the mean pooling of the token embeddings
|
||||||
|
# mean_embedding = embeddings.mean(dim=1)
|
||||||
|
mean_embedding = (embeddings * attention_mask.unsqueeze(-1)).sum(dim=1) / attention_mask.sum(dim=1, keepdim=True)
|
||||||
|
all_embeddings.append(mean_embedding)
|
||||||
|
|
||||||
|
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||||
|
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||||
|
|
||||||
|
self.embeddings = all_embeddings
|
||||||
|
|
||||||
|
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||||
|
device = 'cuda'
|
||||||
|
batch1_size = batch1.size(0)
|
||||||
|
batch2_size = batch2.size(0)
|
||||||
|
batch2.to(device)
|
||||||
|
|
||||||
|
# Prepare an empty tensor to store results
|
||||||
|
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||||
|
|
||||||
|
# Process batch1 in chunks
|
||||||
|
for i in range(0, batch1_size, chunk_size):
|
||||||
|
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||||
|
|
||||||
|
batch1_chunk.to(device)
|
||||||
|
# Expand batch1 chunk and entire batch2 for comparison
|
||||||
|
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||||
|
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||||
|
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||||
|
|
||||||
|
|
||||||
|
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||||
|
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||||
|
|
||||||
|
# Compute cosine similarity by matrix multiplication and normalizing
|
||||||
|
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||||
|
|
||||||
|
# Store the results in the appropriate part of the final tensor
|
||||||
|
cos_sim[i:i + chunk_size] = sim_chunk
|
||||||
|
|
||||||
|
return cos_sim
|
||||||
|
|
|
@ -1 +1,3 @@
|
||||||
__pycache__
|
__pycache__
|
||||||
|
exports
|
||||||
|
output.txt
|
|
@ -1,31 +1,31 @@
|
||||||
|
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Best threshold: 0.9775
|
Best threshold: 0.9
|
||||||
Accuracy: 0.92512
|
Accuracy: 0.89804
|
||||||
F1 Score: 0.76313
|
F1 Score: 0.74986
|
||||||
Precision: 0.78069
|
Precision: 0.62127
|
||||||
Recall: 0.74633
|
Recall: 0.94558
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Best threshold: 0.9775
|
Best threshold: 0.9
|
||||||
Accuracy: 0.92054
|
Accuracy: 0.86719
|
||||||
F1 Score: 0.81117
|
F1 Score: 0.73213
|
||||||
Precision: 0.77150
|
Precision: 0.61272
|
||||||
Recall: 0.85514
|
Recall: 0.90935
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Best threshold: 0.985
|
Best threshold: 0.9
|
||||||
Accuracy: 0.93201
|
Accuracy: 0.86941
|
||||||
F1 Score: 0.83578
|
F1 Score: 0.74849
|
||||||
Precision: 0.81657
|
Precision: 0.61280
|
||||||
Recall: 0.85592
|
Recall: 0.96135
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Best threshold: 0.9924999999999999
|
Best threshold: 0.9
|
||||||
Accuracy: 0.95334
|
Accuracy: 0.86325
|
||||||
F1 Score: 0.82722
|
F1 Score: 0.65826
|
||||||
Precision: 0.83341
|
Precision: 0.49865
|
||||||
Recall: 0.82112
|
Recall: 0.96813
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Best threshold: 0.9924999999999999
|
Best threshold: 0.9
|
||||||
Accuracy: 0.92968
|
Accuracy: 0.84147
|
||||||
F1 Score: 0.77680
|
F1 Score: 0.66416
|
||||||
Precision: 0.83395
|
Precision: 0.51612
|
||||||
Recall: 0.72698
|
Recall: 0.93129
|
||||||
|
|
|
@ -110,27 +110,41 @@ def run_similarity_classifier(fold):
|
||||||
sim_list.append(top_sim_value)
|
sim_list.append(top_sim_value)
|
||||||
|
|
||||||
# analysis 1: using threshold to perform find-back prediction success
|
# analysis 1: using threshold to perform find-back prediction success
|
||||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
# threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||||
best_threshold = 0
|
# best_threshold = 0
|
||||||
best_f1 = 0
|
# best_f1 = 0
|
||||||
for threshold in threshold_values:
|
# for threshold in threshold_values:
|
||||||
predict_list = [ elem > threshold for elem in sim_list ]
|
# predict_list = [ elem > threshold for elem in sim_list ]
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
# y_true = test_df['MDM'].to_list()
|
||||||
y_pred = predict_list
|
# y_pred = predict_list
|
||||||
|
|
||||||
# Compute metrics
|
# # Compute metrics
|
||||||
accuracy = accuracy_score(y_true, y_pred)
|
# accuracy = accuracy_score(y_true, y_pred)
|
||||||
f1 = f1_score(y_true, y_pred)
|
# f1 = f1_score(y_true, y_pred)
|
||||||
precision = precision_score(y_true, y_pred)
|
# precision = precision_score(y_true, y_pred)
|
||||||
recall = recall_score(y_true, y_pred)
|
# recall = recall_score(y_true, y_pred)
|
||||||
|
|
||||||
if f1 > best_f1:
|
# if f1 > best_f1:
|
||||||
best_threshold = threshold
|
# best_threshold = threshold
|
||||||
best_f1 = f1
|
# best_f1 = f1
|
||||||
|
|
||||||
|
# just manually set best_threshold
|
||||||
|
best_threshold = 0.90
|
||||||
|
|
||||||
# compute metrics again with best threshold
|
# compute metrics again with best threshold
|
||||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||||
|
|
||||||
|
# save
|
||||||
|
pred_labels = np.array(predict_list, dtype=bool)
|
||||||
|
|
||||||
|
# append the mdm prediction to the test_df for analysis later
|
||||||
|
df_out = pd.DataFrame({
|
||||||
|
'p_mdm': pred_labels,
|
||||||
|
})
|
||||||
|
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||||
|
|
||||||
|
|
||||||
y_true = test_df['MDM'].to_list()
|
y_true = test_df['MDM'].to_list()
|
||||||
y_pred = predict_list
|
y_pred = predict_list
|
||||||
# Compute metrics
|
# Compute metrics
|
||||||
|
|
|
@ -1,31 +1,31 @@
|
||||||
|
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 1
|
Fold: 1
|
||||||
Accuracy: 0.68859
|
Accuracy: 0.77142
|
||||||
F1 Score: 0.62592
|
F1 Score: 0.70728
|
||||||
Precision: 0.60775
|
Precision: 0.67509
|
||||||
Recall: 0.68859
|
Recall: 0.77142
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 2
|
Fold: 2
|
||||||
Accuracy: 0.72150
|
Accuracy: 0.74065
|
||||||
F1 Score: 0.65739
|
F1 Score: 0.68315
|
||||||
Precision: 0.63652
|
Precision: 0.66680
|
||||||
Recall: 0.72150
|
Recall: 0.74065
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 3
|
Fold: 3
|
||||||
Accuracy: 0.72038
|
Accuracy: 0.74849
|
||||||
F1 Score: 0.65781
|
F1 Score: 0.68717
|
||||||
Precision: 0.63249
|
Precision: 0.65975
|
||||||
Recall: 0.72038
|
Recall: 0.74849
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 4
|
Fold: 4
|
||||||
Accuracy: 0.74167
|
Accuracy: 0.71836
|
||||||
F1 Score: 0.68167
|
F1 Score: 0.65179
|
||||||
Precision: 0.65489
|
Precision: 0.63155
|
||||||
Recall: 0.74167
|
Recall: 0.71836
|
||||||
********************************************************************************
|
********************************************************************************
|
||||||
Fold: 5
|
Fold: 5
|
||||||
Accuracy: 0.67705
|
Accuracy: 0.71461
|
||||||
F1 Score: 0.61273
|
F1 Score: 0.65512
|
||||||
Precision: 0.59472
|
Precision: 0.63375
|
||||||
Recall: 0.67705
|
Recall: 0.71461
|
||||||
|
|
|
@ -1,12 +1,12 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
# cd classification_bert_complete_desc
|
cd classification_bert_complete_desc
|
||||||
# micromamba run -n hug accelerate launch train.py
|
micromamba run -n hug accelerate launch train.py
|
||||||
# cd ..
|
cd ..
|
||||||
#
|
|
||||||
# cd classification_bert_complete_desc_unit
|
cd classification_bert_complete_desc_unit
|
||||||
# micromamba run -n hug accelerate launch train.py
|
micromamba run -n hug accelerate launch train.py
|
||||||
# cd ..
|
cd ..
|
||||||
|
|
||||||
cd classification_bert_complete_desc_unit_name
|
cd classification_bert_complete_desc_unit_name
|
||||||
micromamba run -n hug accelerate launch train.py
|
micromamba run -n hug accelerate launch train.py
|
||||||
|
@ -22,4 +22,4 @@ cd ..
|
||||||
#
|
#
|
||||||
# cd mapping_t5_complete_name_desc_unit
|
# cd mapping_t5_complete_name_desc_unit
|
||||||
# micromamba run -n hug accelerate launch train.py
|
# micromamba run -n hug accelerate launch train.py
|
||||||
# cd ..
|
# cd ..
|
||||||
|
|
Loading…
Reference in New Issue