Feat: added overall section to evaluate combined accuracy
- added relevant-class section
This commit is contained in:
parent
6072e4408c
commit
086b867d91
|
@ -0,0 +1,2 @@
|
|||
This section is to evaluate the combined (relevant-class prediction) and
|
||||
(mapping prediction) to evaluate the final correct mapping accuracy.
|
|
@ -0,0 +1,34 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
|
||||
# following code computes final mapping + classification accuracy
|
||||
# %%
|
||||
def run(fold):
|
||||
data_path = f'../relevant_class/binary_classifier_desc_unit/classification_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
p_mdm = df['p_mdm']
|
||||
|
||||
# data_path = f'../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
data_path = f'../train/modified_t5_decoder_4_layers/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
actual_mdm = df['MDM']
|
||||
|
||||
thing_correctness = df['thing'] == df['p_thing']
|
||||
property_correctness = df['property'] == df['p_property']
|
||||
answer = thing_correctness & property_correctness
|
||||
|
||||
# if is non-MDM -> then should be unmapped
|
||||
# if is MDM -> then should be mapped correctly
|
||||
|
||||
# out of correctly predicted relevant data, how many are mapped correctly?
|
||||
correct_positive_mdm_and_map = sum(p_mdm & actual_mdm & answer)
|
||||
|
||||
# number of correctly predicted non-relevant data
|
||||
correct_negative_mdm = sum(~(p_mdm) & ~(actual_mdm))
|
||||
|
||||
overall_correct = (correct_positive_mdm_and_map + correct_negative_mdm)/len(actual_mdm)
|
||||
print(overall_correct)
|
||||
# %%
|
||||
for fold in [1,2,3,4,5]:
|
||||
run(fold)
|
||||
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
|
@ -0,0 +1,2 @@
|
|||
exports
|
||||
output.txt
|
|
@ -0,0 +1,235 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
pred_labels = np.array(pred_labels, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df_export = pd.concat([test_df, df_out], axis=1)
|
||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
cm = confusion_matrix(y_true, y_pred)
|
||||
tn, fp, fn, tp = cm.ravel()
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f"tp: {tp}", file=f)
|
||||
print(f"tn: {tn}", file=f)
|
||||
print(f"fp: {fp}", file=f)
|
||||
print(f"fn: {fn}", file=f)
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,218 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {0: False, 1: True}
|
||||
label2id = {False: 0, True: 1}
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
||||
# reconstruct full training data with non-mdm data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
ships_list = list(set(test_df['ships_idx']))
|
||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||
|
||||
train_ships_set = set(train_ships_list)
|
||||
test_ships_set = set(ships_list)
|
||||
|
||||
# assertion for non data leakage
|
||||
assert not set(train_ships_set).intersection(test_ships_set)
|
||||
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,2 @@
|
|||
checkpoint*
|
||||
tensorboard-log
|
2
relevant_class/binary_classifier_desc_unit/classification_prediction/.gitignore
vendored
Normal file
2
relevant_class/binary_classifier_desc_unit/classification_prediction/.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
|||
exports
|
||||
output.txt
|
|
@ -0,0 +1,235 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
import glob
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
|
||||
BATCH_SIZE = 256
|
||||
|
||||
# %%
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_dataset(fold):
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
test_dataset = Dataset.from_list(process_df_to_dict(test_df))
|
||||
|
||||
return test_dataset
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def test(fold):
|
||||
|
||||
test_dataset = create_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
# %%
|
||||
# compute max token length
|
||||
max_length = 0
|
||||
for sample in test_dataset['text']:
|
||||
# Tokenize the sample and get the length
|
||||
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||||
length = len(input_ids)
|
||||
|
||||
# Update max_length if this sample is longer
|
||||
if length > max_length:
|
||||
max_length = length
|
||||
|
||||
print(max_length)
|
||||
|
||||
# %%
|
||||
|
||||
max_length = 128
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
# truncation=True,
|
||||
padding='max_length'
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
datasets = test_dataset.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
|
||||
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
# metric = evaluate.load("accuracy")
|
||||
#
|
||||
#
|
||||
# def compute_metrics(eval_preds):
|
||||
# preds, labels = eval_preds
|
||||
# preds = np.argmax(preds, axis=1)
|
||||
# return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
model = model.eval()
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
model.to(device)
|
||||
|
||||
pred_labels = []
|
||||
actual_labels = []
|
||||
|
||||
|
||||
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||||
for batch in tqdm(dataloader):
|
||||
# Inference in batches
|
||||
input_ids = batch['input_ids']
|
||||
attention_mask = batch['attention_mask']
|
||||
# save labels too
|
||||
actual_labels.extend(batch['label'])
|
||||
|
||||
|
||||
# Move to GPU if available
|
||||
input_ids = input_ids.to(device)
|
||||
attention_mask = attention_mask.to(device)
|
||||
|
||||
# Perform inference
|
||||
with torch.no_grad():
|
||||
logits = model(
|
||||
input_ids,
|
||||
attention_mask).logits
|
||||
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||||
pred_labels.extend(predicted_class_ids)
|
||||
|
||||
pred_labels = [tensor.item() for tensor in pred_labels]
|
||||
pred_labels = np.array(pred_labels, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df_export = pd.concat([test_df, df_out], axis=1)
|
||||
df_export.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
y_true = actual_labels
|
||||
y_pred = pred_labels
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
cm = confusion_matrix(y_true, y_pred)
|
||||
tn, fp, fn, tp = cm.ravel()
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
|
||||
print('*' * 80, file=f)
|
||||
print(f'Fold: {fold}', file=f)
|
||||
# Print the results
|
||||
print(f"tp: {tp}", file=f)
|
||||
print(f"tn: {tn}", file=f)
|
||||
print(f"fp: {fp}", file=f)
|
||||
print(f"fn: {fn}", file=f)
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
test(fold)
|
|
@ -0,0 +1,219 @@
|
|||
# %%
|
||||
|
||||
# from datasets import load_from_disk
|
||||
import os
|
||||
|
||||
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||||
os.environ['NCCL_IB_DISABLE'] = '1'
|
||||
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||||
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
Trainer,
|
||||
EarlyStoppingCallback,
|
||||
TrainingArguments
|
||||
)
|
||||
import evaluate
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import matplotlib.pyplot as plt
|
||||
from datasets import Dataset, DatasetDict
|
||||
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision('high')
|
||||
|
||||
# %%
|
||||
|
||||
# we need to create the mdm_list
|
||||
# import the full mdm-only file
|
||||
# data_path = '../../data_import/exports/data_mapping_mdm.csv'
|
||||
# full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
# rather than use pattern, we use the real thing and property
|
||||
|
||||
|
||||
# %%
|
||||
id2label = {0: False, 1: True}
|
||||
label2id = {False: 0, True: 1}
|
||||
|
||||
# %%
|
||||
|
||||
# outputs a list of dictionaries
|
||||
# processes dataframe into lists of dictionaries
|
||||
# each element maps input to output
|
||||
# input: tag_description
|
||||
# output: class label
|
||||
def process_df_to_dict(df):
|
||||
output_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
in_mdm_label = int(row['MDM'])
|
||||
element = {
|
||||
'text' : f"{desc}{unit}",
|
||||
'label': in_mdm_label,
|
||||
}
|
||||
output_list.append(element)
|
||||
|
||||
return output_list
|
||||
|
||||
|
||||
def create_split_dataset(fold):
|
||||
# train
|
||||
# data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
||||
# reconstruct full training data with non-mdm data
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
ships_list = list(set(test_df['ships_idx']))
|
||||
data_path = '../../data_preprocess/exports/preprocessed_data.csv'
|
||||
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
train_df = full_df[~full_df['ships_idx'].isin(ships_list)]
|
||||
|
||||
train_ships_list = sorted(list(set(train_df['ships_idx'])))
|
||||
|
||||
train_ships_set = set(train_ships_list)
|
||||
test_ships_set = set(ships_list)
|
||||
|
||||
# assertion for non data leakage
|
||||
assert not set(train_ships_set).intersection(test_ships_set)
|
||||
|
||||
|
||||
# valid
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/valid.csv"
|
||||
validation_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
combined_data = DatasetDict({
|
||||
'train': Dataset.from_list(process_df_to_dict(train_df)),
|
||||
'validation' : Dataset.from_list(process_df_to_dict(validation_df)),
|
||||
})
|
||||
return combined_data
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
# function to perform training for a given fold
|
||||
def train(fold):
|
||||
|
||||
save_path = f'checkpoint_fold_{fold}'
|
||||
split_datasets = create_split_dataset(fold)
|
||||
|
||||
# prepare tokenizer
|
||||
|
||||
model_checkpoint = "distilbert/distilbert-base-cased"
|
||||
# model_checkpoint = 'google-bert/bert-base-cased'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
# Define additional special tokens
|
||||
additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||||
# Add the additional special tokens to the tokenizer
|
||||
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||||
|
||||
max_length = 120
|
||||
|
||||
# given a dataset entry, run it through the tokenizer
|
||||
def preprocess_function(example):
|
||||
input = example['text']
|
||||
# text_target sets the corresponding label to inputs
|
||||
# there is no need to create a separate 'labels'
|
||||
model_inputs = tokenizer(
|
||||
input,
|
||||
max_length=max_length,
|
||||
truncation=True,
|
||||
padding=True
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
# map maps function to each "row" in the dataset
|
||||
# aka the data in the immediate nesting
|
||||
tokenized_datasets = split_datasets.map(
|
||||
preprocess_function,
|
||||
batched=True,
|
||||
num_proc=8,
|
||||
remove_columns="text",
|
||||
)
|
||||
|
||||
# %% temp
|
||||
# tokenized_datasets['train'].rename_columns()
|
||||
|
||||
# %%
|
||||
# create data collator
|
||||
|
||||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
||||
|
||||
# %%
|
||||
# compute metrics
|
||||
metric = evaluate.load("accuracy")
|
||||
|
||||
|
||||
def compute_metrics(eval_preds):
|
||||
preds, labels = eval_preds
|
||||
preds = np.argmax(preds, axis=1)
|
||||
return metric.compute(predictions=preds, references=labels)
|
||||
|
||||
# %%
|
||||
# create id2label and label2id
|
||||
|
||||
|
||||
# %%
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
model_checkpoint,
|
||||
num_labels=2)
|
||||
# important! after extending tokens vocab
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
# model = torch.compile(model, backend="inductor", dynamic=True)
|
||||
|
||||
|
||||
# %%
|
||||
# Trainer
|
||||
|
||||
training_args = TrainingArguments(
|
||||
output_dir=f"{save_path}",
|
||||
# eval_strategy="epoch",
|
||||
eval_strategy="no",
|
||||
logging_dir="tensorboard-log",
|
||||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
)
|
||||
|
||||
|
||||
trainer = Trainer(
|
||||
model,
|
||||
training_args,
|
||||
train_dataset=tokenized_datasets["train"],
|
||||
eval_dataset=tokenized_datasets["validation"],
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
# callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
||||
)
|
||||
|
||||
# uncomment to load training from checkpoint
|
||||
# checkpoint_path = 'default_40_1/checkpoint-5600'
|
||||
# trainer.train(resume_from_checkpoint=checkpoint_path)
|
||||
|
||||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
||||
# %%
|
|
@ -0,0 +1,3 @@
|
|||
__pycache__
|
||||
exports
|
||||
output.txt
|
|
@ -0,0 +1,4 @@
|
|||
# one-class classification by similarity
|
||||
|
||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
||||
to MDM
|
|
@ -0,0 +1,175 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
|
||||
##################################################
|
||||
# helper functions
|
||||
|
||||
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
|
||||
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
element = f"{desc}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
def compute_top_k(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
_, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return top_k_values[0][0]
|
||||
|
||||
|
||||
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||
|
||||
|
||||
sim_list = []
|
||||
for select_idx in tqdm(test_df.index):
|
||||
top_sim_value = compute_top_k(select_idx)
|
||||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||
best_threshold = 0
|
||||
best_f1 = 0
|
||||
for threshold in threshold_values:
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
if f1 > best_f1:
|
||||
best_threshold = threshold
|
||||
best_f1 = f1
|
||||
|
||||
# OR just manually set best_threshold
|
||||
# best_threshold = 0.90
|
||||
|
||||
# compute metrics again with best threshold
|
||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||
|
||||
# save
|
||||
pred_labels = np.array(predict_list, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print(f'Fold: {fold}', file=f)
|
||||
print(f'Best threshold: {best_threshold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
run_similarity_classifier(fold)
|
|
@ -0,0 +1,81 @@
|
|||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
class Retriever:
|
||||
def __init__(self, input_texts, model_checkpoint):
|
||||
# we need to generate the embedding from list of input strings
|
||||
self.embeddings = []
|
||||
self.inputs = input_texts
|
||||
model_checkpoint = model_checkpoint
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
model.to(self.device)
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
def make_embedding(self, batch_size=64):
|
||||
all_embeddings = self.embeddings
|
||||
input_texts = self.inputs
|
||||
|
||||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
||||
# Pass the input through the encoder and retrieve the embeddings
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||
# get last layer
|
||||
embeddings = encoder_outputs.hidden_states[-1]
|
||||
# get cls token embedding
|
||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
all_embeddings.append(cls_embeddings)
|
||||
|
||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||
|
||||
self.embeddings = all_embeddings
|
||||
|
||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||
device = 'cuda'
|
||||
batch1_size = batch1.size(0)
|
||||
batch2_size = batch2.size(0)
|
||||
batch2.to(device)
|
||||
|
||||
# Prepare an empty tensor to store results
|
||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||
|
||||
# Process batch1 in chunks
|
||||
for i in range(0, batch1_size, chunk_size):
|
||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||
|
||||
batch1_chunk.to(device)
|
||||
# Expand batch1 chunk and entire batch2 for comparison
|
||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||
|
||||
|
||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||
|
||||
# Compute cosine similarity by matrix multiplication and normalizing
|
||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||
|
||||
# Store the results in the appropriate part of the final tensor
|
||||
cos_sim[i:i + chunk_size] = sim_chunk
|
||||
|
||||
return cos_sim
|
|
@ -0,0 +1,3 @@
|
|||
__pycache__
|
||||
exports
|
||||
output.txt
|
|
@ -0,0 +1,4 @@
|
|||
# one-class classification by similarity
|
||||
|
||||
Purpose: using only Ship Domain attributes, we want to find if the data belongs
|
||||
to MDM
|
|
@ -0,0 +1,176 @@
|
|||
# %%
|
||||
import pandas as pd
|
||||
from utils import Retriever, cosine_similarity_chunked
|
||||
import os
|
||||
import glob
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||||
|
||||
##################################################
|
||||
# helper functions
|
||||
|
||||
|
||||
# the following function takes in a full cos_sim_matrix
|
||||
# condition_source: boolean selectors of the source embedding
|
||||
# condition_target: boolean selectors of the target embedding
|
||||
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||||
# subset_matrix = cos_sim_matrix[condition_source]
|
||||
# except we are subsetting 2D matrix (row, column)
|
||||
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||||
# we select top k here
|
||||
# Get the indices of the top k maximum values along axis 1
|
||||
top_k = 3
|
||||
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||||
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||||
# the result is flipped
|
||||
top_k_indices[0] = top_k_indices[0][::-1]
|
||||
|
||||
# Get the values of the top 5 maximum scores
|
||||
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||||
|
||||
|
||||
return top_k_indices, top_k_values
|
||||
|
||||
|
||||
|
||||
|
||||
class Embedder():
|
||||
input_df: pd.DataFrame
|
||||
fold: int
|
||||
|
||||
def __init__(self, input_df):
|
||||
self.input_df = input_df
|
||||
|
||||
|
||||
def make_embedding(self, checkpoint_path):
|
||||
|
||||
def generate_input_list(df):
|
||||
input_list = []
|
||||
for _, row in df.iterrows():
|
||||
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||||
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||||
element = f"{desc}{unit}"
|
||||
input_list.append(element)
|
||||
return input_list
|
||||
|
||||
# prepare reference embed
|
||||
train_data = list(generate_input_list(self.input_df))
|
||||
# Define the directory and the pattern
|
||||
retriever_train = Retriever(train_data, checkpoint_path)
|
||||
retriever_train.make_embedding(batch_size=64)
|
||||
return retriever_train.embeddings.to('cpu')
|
||||
|
||||
|
||||
|
||||
def run_similarity_classifier(fold):
|
||||
data_path = f'../../train/mapping_t5_complete_desc_unit_name/mapping_prediction/exports/result_group_{fold}.csv'
|
||||
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
|
||||
|
||||
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
|
||||
checkpoint_directory = "../../train/classification_bert_complete_desc_unit"
|
||||
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||||
# Use glob to find matching paths
|
||||
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||||
# we are guaranteed to save only 1 checkpoint from training
|
||||
pattern = 'checkpoint-*'
|
||||
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||||
|
||||
train_embedder = Embedder(input_df=train_df)
|
||||
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
test_embedder = Embedder(input_df=test_df)
|
||||
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||||
|
||||
def compute_top_k(select_idx):
|
||||
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||||
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||||
|
||||
_, top_k_values = find_closest(
|
||||
cos_sim_matrix=cos_sim_matrix,
|
||||
condition_source=condition_source,
|
||||
condition_target=condition_target)
|
||||
|
||||
return top_k_values[0][0]
|
||||
|
||||
|
||||
|
||||
# test embeds are inputs since we are looking back at train data
|
||||
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||||
|
||||
|
||||
sim_list = []
|
||||
for select_idx in tqdm(test_df.index):
|
||||
top_sim_value = compute_top_k(select_idx)
|
||||
sim_list.append(top_sim_value)
|
||||
|
||||
# analysis 1: using threshold to perform find-back prediction success
|
||||
threshold_values = np.linspace(0.85, 1.00, 21) # test 20 values, 21 to get nice round numbers
|
||||
best_threshold = 0
|
||||
best_f1 = 0
|
||||
for threshold in threshold_values:
|
||||
predict_list = [ elem > threshold for elem in sim_list ]
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
if f1 > best_f1:
|
||||
best_threshold = threshold
|
||||
best_f1 = f1
|
||||
|
||||
# just manually set best_threshold
|
||||
# best_threshold = 0.90
|
||||
|
||||
# compute metrics again with best threshold
|
||||
predict_list = [ elem > best_threshold for elem in sim_list ]
|
||||
|
||||
# save
|
||||
pred_labels = np.array(predict_list, dtype=bool)
|
||||
|
||||
# append the mdm prediction to the test_df for analysis later
|
||||
df_out = pd.DataFrame({
|
||||
'p_mdm': pred_labels,
|
||||
})
|
||||
df_out.to_csv(f"exports/result_group_{fold}.csv", index=False)
|
||||
|
||||
|
||||
y_true = test_df['MDM'].to_list()
|
||||
y_pred = predict_list
|
||||
# Compute metrics
|
||||
accuracy = accuracy_score(y_true, y_pred)
|
||||
f1 = f1_score(y_true, y_pred)
|
||||
precision = precision_score(y_true, y_pred)
|
||||
recall = recall_score(y_true, y_pred)
|
||||
|
||||
|
||||
|
||||
with open("output.txt", "a") as f:
|
||||
|
||||
print(f'Fold: {fold}', file=f)
|
||||
print(f'Best threshold: {best_threshold}', file=f)
|
||||
# Print the results
|
||||
print(f'Accuracy: {accuracy:.5f}', file=f)
|
||||
print(f'F1 Score: {f1:.5f}', file=f)
|
||||
print(f'Precision: {precision:.5f}', file=f)
|
||||
print(f'Recall: {recall:.5f}', file=f)
|
||||
|
||||
|
||||
|
||||
# %%
|
||||
# reset file before writing to it
|
||||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
run_similarity_classifier(fold)
|
|
@ -0,0 +1,81 @@
|
|||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForSequenceClassification,
|
||||
DataCollatorWithPadding,
|
||||
)
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
|
||||
class Retriever:
|
||||
def __init__(self, input_texts, model_checkpoint):
|
||||
# we need to generate the embedding from list of input strings
|
||||
self.embeddings = []
|
||||
self.inputs = input_texts
|
||||
model_checkpoint = model_checkpoint
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||||
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
# device = "cpu"
|
||||
model.to(self.device)
|
||||
self.model = model.eval()
|
||||
|
||||
|
||||
def make_embedding(self, batch_size=64):
|
||||
all_embeddings = self.embeddings
|
||||
input_texts = self.inputs
|
||||
|
||||
for i in range(0, len(input_texts), batch_size):
|
||||
batch_texts = input_texts[i:i+batch_size]
|
||||
# Tokenize the input text
|
||||
inputs = self.tokenizer(batch_texts, return_tensors="pt", padding=True, truncation=True, max_length=64)
|
||||
input_ids = inputs.input_ids.to(self.device)
|
||||
attention_mask = inputs.attention_mask.to(self.device)
|
||||
|
||||
|
||||
# Pass the input through the encoder and retrieve the embeddings
|
||||
with torch.no_grad():
|
||||
encoder_outputs = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
|
||||
# get last layer
|
||||
embeddings = encoder_outputs.hidden_states[-1]
|
||||
# get cls token embedding
|
||||
cls_embeddings = embeddings[:, 0, :] # Shape: (batch_size, hidden_size)
|
||||
all_embeddings.append(cls_embeddings)
|
||||
|
||||
# remove the batch list and makes a single large tensor, dim=0 increases row-wise
|
||||
all_embeddings = torch.cat(all_embeddings, dim=0)
|
||||
|
||||
self.embeddings = all_embeddings
|
||||
|
||||
def cosine_similarity_chunked(batch1, batch2, chunk_size=1024):
|
||||
device = 'cuda'
|
||||
batch1_size = batch1.size(0)
|
||||
batch2_size = batch2.size(0)
|
||||
batch2.to(device)
|
||||
|
||||
# Prepare an empty tensor to store results
|
||||
cos_sim = torch.empty(batch1_size, batch2_size, device=device)
|
||||
|
||||
# Process batch1 in chunks
|
||||
for i in range(0, batch1_size, chunk_size):
|
||||
batch1_chunk = batch1[i:i + chunk_size] # Get chunk of batch1
|
||||
|
||||
batch1_chunk.to(device)
|
||||
# Expand batch1 chunk and entire batch2 for comparison
|
||||
# batch1_chunk_exp = batch1_chunk.unsqueeze(1) # Shape: (chunk_size, 1, seq_len)
|
||||
# batch2_exp = batch2.unsqueeze(0) # Shape: (1, batch2_size, seq_len)
|
||||
batch2_norms = batch2.norm(dim=1, keepdim=True)
|
||||
|
||||
|
||||
# Compute cosine similarity for the chunk and store it in the final tensor
|
||||
# cos_sim[i:i + chunk_size] = F.cosine_similarity(batch1_chunk_exp, batch2_exp, dim=-1)
|
||||
|
||||
# Compute cosine similarity by matrix multiplication and normalizing
|
||||
sim_chunk = torch.mm(batch1_chunk, batch2.T) / (batch1_chunk.norm(dim=1, keepdim=True) * batch2_norms.T + 1e-8)
|
||||
|
||||
# Store the results in the appropriate part of the final tensor
|
||||
cos_sim[i:i + chunk_size] = sim_chunk
|
||||
|
||||
return cos_sim
|
|
@ -176,9 +176,9 @@ def train(fold):
|
|||
logging_strategy="epoch",
|
||||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -178,8 +178,8 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-5,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9342167534311405
|
||||
Accuracy for fold 2: 0.883177570093458
|
||||
Accuracy for fold 3: 0.963855421686747
|
||||
Accuracy for fold 4: 0.9705042816365367
|
||||
Accuracy for fold 5: 0.9051763628034815
|
||||
|
|
|
@ -1,2 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9398958826313298
|
||||
Accuracy for fold 1: 0.9242782773308093
|
||||
Accuracy for fold 2: 0.9126168224299065
|
||||
Accuracy for fold 3: 0.9643574297188755
|
||||
Accuracy for fold 4: 0.9595623215984777
|
||||
Accuracy for fold 5: 0.8950984883188273
|
||||
|
|
|
@ -70,5 +70,5 @@ def infer_and_select(fold):
|
|||
with open("output.txt", "w") as f:
|
||||
print('', file=f)
|
||||
|
||||
for fold in [1]:
|
||||
for fold in [1,2,3,4,5]:
|
||||
infer_and_select(fold)
|
||||
|
|
|
@ -230,7 +230,7 @@ def train(fold):
|
|||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
|
|
@ -190,8 +190,8 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False, # t5_classify = T5Model.from_pretrained(prev_checkpoint)
|
||||
weight_decay=0.01,
|
||||
|
@ -221,7 +221,7 @@ def train(fold):
|
|||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9337434926644581
|
||||
Accuracy for fold 2: 0.914018691588785
|
||||
Accuracy for fold 3: 0.9623493975903614
|
||||
Accuracy for fold 4: 0.9738344433872502
|
||||
Accuracy for fold 5: 0.9042601923957856
|
||||
Accuracy for fold 1: 0.9394226218646474
|
||||
Accuracy for fold 2: 0.9107476635514019
|
||||
Accuracy for fold 3: 0.9548192771084337
|
||||
Accuracy for fold 4: 0.972882968601332
|
||||
Accuracy for fold 5: 0.8996793403573065
|
||||
|
|
|
@ -228,7 +228,7 @@ def train(fold):
|
|||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
|
|
@ -189,13 +189,13 @@ def train(fold):
|
|||
# save_strategy="epoch",
|
||||
load_best_model_at_end=False,
|
||||
learning_rate=1e-3,
|
||||
per_device_train_batch_size=128,
|
||||
per_device_eval_batch_size=128,
|
||||
per_device_train_batch_size=64,
|
||||
per_device_eval_batch_size=64,
|
||||
auto_find_batch_size=False,
|
||||
ddp_find_unused_parameters=False,
|
||||
weight_decay=0.01,
|
||||
save_total_limit=1,
|
||||
num_train_epochs=40,
|
||||
num_train_epochs=80,
|
||||
bf16=True,
|
||||
push_to_hub=False,
|
||||
remove_unused_columns=False,
|
||||
|
@ -220,7 +220,7 @@ def train(fold):
|
|||
trainer.train()
|
||||
|
||||
# execute training
|
||||
for fold in [1]:
|
||||
for fold in [1,2,3,4,5]:
|
||||
print(fold)
|
||||
train(fold)
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@ def infer_and_select(fold):
|
|||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
|
|
@ -13,7 +13,7 @@ def infer_and_select(fold):
|
|||
# import test data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||||
df = pd.read_csv(data_path, skipinitialspace=True)
|
||||
df = df[df['MDM']].reset_index(drop=True)
|
||||
# df = df[df['MDM']].reset_index(drop=True)
|
||||
|
||||
# get target data
|
||||
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||||
|
|
|
@ -1,2 +1,6 @@
|
|||
|
||||
Accuracy for fold 1: 0.9342167534311405
|
||||
Accuracy for fold 1: 0.0
|
||||
Accuracy for fold 2: 0.0
|
||||
Accuracy for fold 3: 0.0
|
||||
Accuracy for fold 4: 0.0
|
||||
Accuracy for fold 5: 0.0
|
||||
|
|
|
@ -1,16 +1,27 @@
|
|||
#!/bin/bash
|
||||
|
||||
cd classification_bert_complete_desc
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd hybrid_t5_complete_desc_unit
|
||||
micromamba run -n hug accelerate launch train_encoder.py
|
||||
micromamba run -n hug accelerate launch train_decoder.py
|
||||
cd ..
|
||||
|
||||
cd classification_bert_complete_desc_unit
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd hybrid_t5_pattern_desc_unit
|
||||
micromamba run -n hug accelerate launch train_encoder.py
|
||||
micromamba run -n hug accelerate launch train_decoder.py
|
||||
cd ..
|
||||
|
||||
cd classification_bert_complete_desc_unit_name
|
||||
micromamba run -n hug accelerate launch train.py
|
||||
cd ..
|
||||
|
||||
# cd classification_bert_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd classification_bert_complete_desc_unit
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd classification_bert_complete_desc_unit_name
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
# cd ..
|
||||
|
||||
# cd mapping_t5_complete_desc
|
||||
# micromamba run -n hug accelerate launch train.py
|
||||
|
|
Loading…
Reference in New Issue