289 lines
8.9 KiB
Python
289 lines
8.9 KiB
Python
|
# %%
|
||
|
import pandas as pd
|
||
|
from utils import Retriever, cosine_similarity_chunked
|
||
|
import os
|
||
|
import glob
|
||
|
import numpy as np
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
# %%
|
||
|
fold = 1
|
||
|
data_path = f'../../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
# %%
|
||
|
class Embedder():
|
||
|
input_df: pd.DataFrame
|
||
|
fold: int
|
||
|
|
||
|
def __init__(self, input_df):
|
||
|
self.input_df = input_df
|
||
|
|
||
|
|
||
|
def make_embedding(self, checkpoint_path):
|
||
|
|
||
|
def generate_input_list(df):
|
||
|
input_list = []
|
||
|
for _, row in df.iterrows():
|
||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||
|
unit = f"<UNIT>{row['unit']}<UNIT>"
|
||
|
element = f"{desc}{unit}"
|
||
|
input_list.append(element)
|
||
|
return input_list
|
||
|
|
||
|
# prepare reference embed
|
||
|
train_data = list(generate_input_list(self.input_df))
|
||
|
# Define the directory and the pattern
|
||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||
|
retriever_train.make_embedding(batch_size=64)
|
||
|
return retriever_train.embeddings.to('cpu')
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
data_path = f"../../data_preprocess/exports/dataset/group_{fold}/train_all.csv"
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
checkpoint_directory = "../../train/classification_bert"
|
||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||
|
|
||
|
train_embedder = Embedder(input_df=train_df)
|
||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
test_embedder = Embedder(input_df=test_df)
|
||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# test embeds are inputs since we are looking back at train data
|
||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=1024).cpu().numpy()
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# the following function takes in a full cos_sim_matrix
|
||
|
# condition_source: boolean selectors of the source embedding
|
||
|
# condition_target: boolean selectors of the target embedding
|
||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||
|
# except we are subsetting 2D matrix (row, column)
|
||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||
|
# we select top k here
|
||
|
# Get the indices of the top 5 maximum values along axis 1
|
||
|
top_k = 3
|
||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||
|
# the result is flipped
|
||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||
|
|
||
|
# Get the values of the top 5 maximum scores
|
||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||
|
|
||
|
|
||
|
return top_k_indices, top_k_values
|
||
|
|
||
|
|
||
|
####################################################
|
||
|
# special find-back code
|
||
|
# %%
|
||
|
def find_back_element_with_print(select_idx):
|
||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||
|
|
||
|
top_k_indices, top_k_values = find_closest(
|
||
|
cos_sim_matrix=cos_sim_matrix,
|
||
|
condition_source=condition_source,
|
||
|
condition_target=condition_target)
|
||
|
|
||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['pattern'].to_list()
|
||
|
training_desc_list = train_df.iloc[top_k_indices[0]]['tag_description'].to_list()
|
||
|
|
||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['pattern'].to_list()
|
||
|
test_desc_list = test_df[test_df.index == select_idx]['tag_description'].to_list()
|
||
|
test_ship_id = test_df[test_df.index == select_idx]['ships_idx'].to_list()[0]
|
||
|
predicted_test_data = test_df[test_df.index == select_idx]['p_thing'] + ' ' + test_df[test_df.index == select_idx]['p_property']
|
||
|
predicted_test_data = predicted_test_data.to_list()[0]
|
||
|
|
||
|
print("*" * 80)
|
||
|
print("idx:", select_idx)
|
||
|
print("train desc", training_desc_list)
|
||
|
print("train thing+property", training_data_pattern_list)
|
||
|
print("test desc", test_desc_list)
|
||
|
print("test thing+property", test_data_pattern_list)
|
||
|
print("predicted thing+property", predicted_test_data)
|
||
|
print("ships idx", test_ship_id)
|
||
|
print("score:", top_k_values[0])
|
||
|
|
||
|
test_pattern = test_data_pattern_list[0]
|
||
|
|
||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||
|
|
||
|
if sum(find_back_list) > 0:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
# %%
|
||
|
def find_back_element(select_idx):
|
||
|
in_train_flag = False
|
||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||
|
|
||
|
top_k_indices, top_k_values = find_closest(
|
||
|
cos_sim_matrix=cos_sim_matrix,
|
||
|
condition_source=condition_source,
|
||
|
condition_target=condition_target)
|
||
|
|
||
|
training_data_pattern_list = train_df.iloc[top_k_indices[0]]['pattern'].to_list()
|
||
|
|
||
|
test_data_pattern_list = test_df[test_df.index == select_idx]['pattern'].to_list()
|
||
|
# just to convert the series format to string
|
||
|
test_pattern = test_data_pattern_list[0]
|
||
|
# print(training_data_pattern_list)
|
||
|
# print(test_data_pattern_list)
|
||
|
|
||
|
|
||
|
find_back_list = [ test_pattern in pattern for pattern in training_data_pattern_list ]
|
||
|
|
||
|
if sum(find_back_list) > 0:
|
||
|
in_train_flag = True
|
||
|
else:
|
||
|
in_train_flag = False
|
||
|
|
||
|
return in_train_flag, top_k_values[0][0]
|
||
|
|
||
|
# %%
|
||
|
in_train_list = []
|
||
|
sim_list = []
|
||
|
for select_idx in tqdm(test_df.index):
|
||
|
in_train_flag, top_sim_value = find_back_element(select_idx)
|
||
|
in_train_list.append(in_train_flag)
|
||
|
sim_list.append(top_sim_value)
|
||
|
|
||
|
# analysis 1: using threshold to perform find-back prediction success
|
||
|
# %%
|
||
|
threshold = 0.9
|
||
|
predict_list = [ elem > threshold for elem in sim_list ]
|
||
|
|
||
|
# %%
|
||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||
|
y_true = in_train_list
|
||
|
y_pred = predict_list
|
||
|
|
||
|
# Compute metrics
|
||
|
accuracy = accuracy_score(y_true, y_pred)
|
||
|
f1 = f1_score(y_true, y_pred, average='macro')
|
||
|
precision = precision_score(y_true, y_pred, average='macro')
|
||
|
recall = recall_score(y_true, y_pred, average='macro')
|
||
|
|
||
|
# Print the results
|
||
|
print(f'Accuracy: {accuracy:.5f}')
|
||
|
print(f'F1 Score: {f1:.5f}')
|
||
|
print(f'Precision: {precision:.5f}')
|
||
|
print(f'Recall: {recall:.5f}')
|
||
|
|
||
|
# analysis 2: using find-back class to check distribution of similarities
|
||
|
# %%
|
||
|
sim_list_true = []
|
||
|
sim_list_false = []
|
||
|
for idx, elem in enumerate(in_train_list):
|
||
|
# true condition
|
||
|
if elem:
|
||
|
sim_list_true.append(sim_list[idx])
|
||
|
else:
|
||
|
sim_list_false.append(sim_list[idx])
|
||
|
|
||
|
# %%
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Sample data
|
||
|
list1 = sim_list_true
|
||
|
list2 = sim_list_false
|
||
|
|
||
|
# Plot histograms
|
||
|
bins = 50
|
||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=False)
|
||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=False)
|
||
|
|
||
|
# Labels and legend
|
||
|
plt.xlabel('Value')
|
||
|
plt.ylabel('Frequency')
|
||
|
plt.legend(loc='upper right')
|
||
|
plt.title('Histograms of in-dist and out-dist similarities')
|
||
|
|
||
|
# Show plot
|
||
|
plt.show()
|
||
|
|
||
|
# analysis 3
|
||
|
# MDM result
|
||
|
# MDM is not an accurate measure due to inconsistencies in training and test
|
||
|
# distributions
|
||
|
# e.g. training is a subset of MDM data, but test could contain MDM data not
|
||
|
# found in train, therefore we cannot possibly achieve perfect prediction of
|
||
|
# 'MDM' data
|
||
|
|
||
|
# it is more accurate to use the result obtained from the find-back search
|
||
|
# %%
|
||
|
# there are 2183 actual datasets
|
||
|
sum(test_df['MDM'])
|
||
|
# %%
|
||
|
# we find 3079 to be similar to the training distribution
|
||
|
sum(predict_list)
|
||
|
# %%
|
||
|
# in actuality only 2051 are similar to the training distribution enough to find
|
||
|
# answers during find-back
|
||
|
sum(in_train_list)
|
||
|
# %%
|
||
|
# out of predicted, 1947 are mdm
|
||
|
# by setting a threshold, we are able to get 95% of 2051
|
||
|
sum(test_df[predict_list]['MDM'])
|
||
|
|
||
|
# %%
|
||
|
# out of find-back labels, 2051 are mdm
|
||
|
# this represents the limit of the data distributional differences
|
||
|
sum(test_df[in_train_list]['MDM'])
|
||
|
|
||
|
# analysis 4
|
||
|
# check if similarity is different between mdm and non-mdm
|
||
|
# this also checks the validity of the selection approach
|
||
|
# %%
|
||
|
sim_list_true = []
|
||
|
sim_list_false = []
|
||
|
in_mdm_list = test_df['MDM'].to_list()
|
||
|
for idx, elem in enumerate(in_mdm_list):
|
||
|
# true condition
|
||
|
if elem:
|
||
|
sim_list_true.append(sim_list[idx])
|
||
|
else:
|
||
|
sim_list_false.append(sim_list[idx])
|
||
|
|
||
|
# %%
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Sample data
|
||
|
list1 = sim_list_true
|
||
|
list2 = sim_list_false
|
||
|
|
||
|
# Plot histograms
|
||
|
bins = 50
|
||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=False)
|
||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=False)
|
||
|
|
||
|
# Labels and legend
|
||
|
plt.xlabel('Value')
|
||
|
plt.ylabel('Frequency')
|
||
|
plt.legend(loc='upper right')
|
||
|
plt.title('Histograms of in-dist and out-dist similarities')
|
||
|
|
||
|
# Show plot
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
# %%
|