229 lines
6.0 KiB
Python
229 lines
6.0 KiB
Python
|
# %%
|
||
|
|
||
|
# from datasets import load_from_disk
|
||
|
import os
|
||
|
import glob
|
||
|
|
||
|
os.environ['NCCL_P2P_DISABLE'] = '1'
|
||
|
os.environ['NCCL_IB_DISABLE'] = '1'
|
||
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.data import DataLoader
|
||
|
|
||
|
from transformers import (
|
||
|
AutoTokenizer,
|
||
|
AutoModelForSequenceClassification,
|
||
|
DataCollatorWithPadding,
|
||
|
Trainer,
|
||
|
EarlyStoppingCallback,
|
||
|
TrainingArguments
|
||
|
)
|
||
|
import evaluate
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
# import matplotlib.pyplot as plt
|
||
|
from datasets import Dataset, DatasetDict
|
||
|
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
torch.set_float32_matmul_precision('high')
|
||
|
|
||
|
# %%
|
||
|
|
||
|
# we need to create the mdm_list
|
||
|
# import the full mdm-only file
|
||
|
data_path = '../../../data_import/exports/data_mapping_mdm.csv'
|
||
|
full_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
mdm_list = sorted(list((set(full_df['pattern']))))
|
||
|
|
||
|
# %%
|
||
|
id2label = {}
|
||
|
label2id = {}
|
||
|
for idx, val in enumerate(mdm_list):
|
||
|
id2label[idx] = val
|
||
|
label2id[val] = idx
|
||
|
|
||
|
# %%
|
||
|
|
||
|
# outputs a list of dictionaries
|
||
|
# processes dataframe into lists of dictionaries
|
||
|
# each element maps input to output
|
||
|
# input: tag_description
|
||
|
# output: class label
|
||
|
def process_df_to_dict(df, mdm_list):
|
||
|
output_list = []
|
||
|
for _, row in df.iterrows():
|
||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||
|
pattern = row['pattern']
|
||
|
try:
|
||
|
index = mdm_list.index(pattern)
|
||
|
except ValueError:
|
||
|
index = -1
|
||
|
element = {
|
||
|
'text' : f"{desc}",
|
||
|
'label': index,
|
||
|
}
|
||
|
output_list.append(element)
|
||
|
|
||
|
return output_list
|
||
|
|
||
|
|
||
|
def create_dataset(fold, mdm_list):
|
||
|
data_path = f"../../../data_preprocess/exports/dataset/group_{fold}/test_all.csv"
|
||
|
test_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
# we only use the mdm subset
|
||
|
test_df = test_df[test_df['MDM']].reset_index(drop=True)
|
||
|
|
||
|
test_dataset = Dataset.from_list(process_df_to_dict(test_df, mdm_list))
|
||
|
|
||
|
return test_dataset
|
||
|
|
||
|
|
||
|
# %%
|
||
|
|
||
|
# function to perform training for a given fold
|
||
|
# def train(fold):
|
||
|
fold = 1
|
||
|
|
||
|
test_dataset = create_dataset(fold, mdm_list)
|
||
|
|
||
|
# prepare tokenizer
|
||
|
|
||
|
checkpoint_directory = f'../checkpoint_fold_{fold}'
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
model_checkpoint = glob.glob(os.path.join(checkpoint_directory, pattern))[0]
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="pt", clean_up_tokenization_spaces=True)
|
||
|
# Define additional special tokens
|
||
|
# additional_special_tokens = ["<THING_START>", "<THING_END>", "<PROPERTY_START>", "<PROPERTY_END>", "<NAME>", "<DESC>", "<SIG>", "<UNIT>", "<DATA_TYPE>"]
|
||
|
# Add the additional special tokens to the tokenizer
|
||
|
# tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
|
||
|
|
||
|
# %%
|
||
|
# compute max token length
|
||
|
max_length = 0
|
||
|
for sample in test_dataset['text']:
|
||
|
# Tokenize the sample and get the length
|
||
|
input_ids = tokenizer(sample, truncation=False, add_special_tokens=True)["input_ids"]
|
||
|
length = len(input_ids)
|
||
|
|
||
|
# Update max_length if this sample is longer
|
||
|
if length > max_length:
|
||
|
max_length = length
|
||
|
|
||
|
print(max_length)
|
||
|
|
||
|
# %%
|
||
|
|
||
|
max_length = 64
|
||
|
|
||
|
# given a dataset entry, run it through the tokenizer
|
||
|
def preprocess_function(example):
|
||
|
input = example['text']
|
||
|
# text_target sets the corresponding label to inputs
|
||
|
# there is no need to create a separate 'labels'
|
||
|
model_inputs = tokenizer(
|
||
|
input,
|
||
|
max_length=max_length,
|
||
|
# truncation=True,
|
||
|
padding='max_length'
|
||
|
)
|
||
|
return model_inputs
|
||
|
|
||
|
# map maps function to each "row" in the dataset
|
||
|
# aka the data in the immediate nesting
|
||
|
datasets = test_dataset.map(
|
||
|
preprocess_function,
|
||
|
batched=True,
|
||
|
num_proc=8,
|
||
|
remove_columns="text",
|
||
|
)
|
||
|
|
||
|
|
||
|
datasets.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label'])
|
||
|
|
||
|
# %% temp
|
||
|
# tokenized_datasets['train'].rename_columns()
|
||
|
|
||
|
# %%
|
||
|
# create data collator
|
||
|
|
||
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="max_length")
|
||
|
|
||
|
# %%
|
||
|
# compute metrics
|
||
|
# metric = evaluate.load("accuracy")
|
||
|
#
|
||
|
#
|
||
|
# def compute_metrics(eval_preds):
|
||
|
# preds, labels = eval_preds
|
||
|
# preds = np.argmax(preds, axis=1)
|
||
|
# return metric.compute(predictions=preds, references=labels)
|
||
|
|
||
|
model = AutoModelForSequenceClassification.from_pretrained(
|
||
|
model_checkpoint,
|
||
|
num_labels=len(mdm_list),
|
||
|
id2label=id2label,
|
||
|
label2id=label2id)
|
||
|
# important! after extending tokens vocab
|
||
|
model.resize_token_embeddings(len(tokenizer))
|
||
|
|
||
|
model = model.eval()
|
||
|
|
||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
model.to(device)
|
||
|
|
||
|
pred_labels = []
|
||
|
actual_labels = []
|
||
|
|
||
|
|
||
|
BATCH_SIZE = 64
|
||
|
dataloader = DataLoader(datasets, batch_size=BATCH_SIZE, shuffle=False)
|
||
|
for batch in tqdm(dataloader):
|
||
|
# Inference in batches
|
||
|
input_ids = batch['input_ids']
|
||
|
attention_mask = batch['attention_mask']
|
||
|
# save labels too
|
||
|
actual_labels.extend(batch['label'])
|
||
|
|
||
|
|
||
|
# Move to GPU if available
|
||
|
input_ids = input_ids.to(device)
|
||
|
attention_mask = attention_mask.to(device)
|
||
|
|
||
|
# Perform inference
|
||
|
with torch.no_grad():
|
||
|
logits = model(
|
||
|
input_ids,
|
||
|
attention_mask).logits
|
||
|
predicted_class_ids = logits.argmax(dim=1).to("cpu")
|
||
|
pred_labels.extend(predicted_class_ids)
|
||
|
|
||
|
pred_labels = [tensor.item() for tensor in pred_labels]
|
||
|
|
||
|
|
||
|
# %%
|
||
|
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
|
||
|
y_true = actual_labels
|
||
|
y_pred = pred_labels
|
||
|
|
||
|
# Compute metrics
|
||
|
accuracy = accuracy_score(y_true, y_pred)
|
||
|
f1 = f1_score(y_true, y_pred, average='macro')
|
||
|
precision = precision_score(y_true, y_pred, average='macro')
|
||
|
recall = recall_score(y_true, y_pred, average='macro')
|
||
|
|
||
|
# Print the results
|
||
|
print(f'Accuracy: {accuracy:.2f}')
|
||
|
print(f'F1 Score: {f1:.2f}')
|
||
|
print(f'Precision: {precision:.2f}')
|
||
|
print(f'Recall: {recall:.2f}')
|
||
|
|
||
|
|
||
|
# %%
|