227 lines
7.0 KiB
Python
227 lines
7.0 KiB
Python
|
# %%
|
||
|
import pandas as pd
|
||
|
from utils import Retriever, cosine_similarity_chunked
|
||
|
import os
|
||
|
import glob
|
||
|
import numpy as np
|
||
|
|
||
|
# %%
|
||
|
data_path = f'../data_preprocess/exports/preprocessed_data.csv'
|
||
|
df_pre = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
# %%
|
||
|
# this should be >0 if we are using abbreviations processed data
|
||
|
desc_list = df_pre['tag_description'].to_list()
|
||
|
|
||
|
# %%
|
||
|
[ elem for elem in desc_list if isinstance(elem, float)]
|
||
|
##########################################
|
||
|
# %%
|
||
|
fold = 1
|
||
|
data_path = f'../train/mapping_pattern/mapping_prediction/exports/result_group_{fold}.csv'
|
||
|
df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
# %%
|
||
|
# subset to mdm
|
||
|
df = df[df['MDM']]
|
||
|
|
||
|
thing_condition = df['p_thing'] == df['thing_pattern']
|
||
|
error_thing_df = df[~thing_condition][['tag_description', 'thing_pattern','p_thing']]
|
||
|
|
||
|
property_condition = df['p_property'] == df['property_pattern']
|
||
|
error_property_df = df[~property_condition][['tag_description', 'property_pattern','p_property']]
|
||
|
|
||
|
correct_df = df[thing_condition & property_condition][['tag_description', 'property_pattern', 'p_property']]
|
||
|
|
||
|
test_df = df
|
||
|
|
||
|
# %%
|
||
|
# thing_df.to_html('thing_errors.html')
|
||
|
# property_df.to_html('property_errors.html')
|
||
|
|
||
|
##########################################
|
||
|
# what we need now is understand why the model is making these mispredictions
|
||
|
# import train data and test data
|
||
|
# %%
|
||
|
class Embedder():
|
||
|
input_df: pd.DataFrame
|
||
|
fold: int
|
||
|
|
||
|
def __init__(self, input_df):
|
||
|
self.input_df = input_df
|
||
|
|
||
|
|
||
|
def make_embedding(self, checkpoint_path):
|
||
|
|
||
|
def generate_input_list(df):
|
||
|
input_list = []
|
||
|
for _, row in df.iterrows():
|
||
|
# name = f"<NAME>{row['tag_name']}<NAME>"
|
||
|
desc = f"<DESC>{row['tag_description']}<DESC>"
|
||
|
# element = f"{name}{desc}"
|
||
|
element = f"{desc}"
|
||
|
input_list.append(element)
|
||
|
return input_list
|
||
|
|
||
|
# prepare reference embed
|
||
|
train_data = list(generate_input_list(self.input_df))
|
||
|
# Define the directory and the pattern
|
||
|
retriever_train = Retriever(train_data, checkpoint_path)
|
||
|
retriever_train.make_mean_embedding(batch_size=64)
|
||
|
return retriever_train.embeddings.to('cpu')
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
data_path = f"../data_preprocess/exports/dataset/group_{fold}/train.csv"
|
||
|
train_df = pd.read_csv(data_path, skipinitialspace=True)
|
||
|
|
||
|
checkpoint_directory = "../train/mapping_pattern"
|
||
|
directory = os.path.join(checkpoint_directory, f'checkpoint_fold_{fold}')
|
||
|
# Use glob to find matching paths
|
||
|
# path is usually checkpoint_fold_1/checkpoint-<step number>
|
||
|
# we are guaranteed to save only 1 checkpoint from training
|
||
|
pattern = 'checkpoint-*'
|
||
|
checkpoint_path = glob.glob(os.path.join(directory, pattern))[0]
|
||
|
|
||
|
train_embedder = Embedder(input_df=train_df)
|
||
|
train_embeds = train_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
test_embedder = Embedder(input_df=test_df)
|
||
|
test_embeds = test_embedder.make_embedding(checkpoint_path)
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
# test embeds are inputs since we are looking back at train data
|
||
|
cos_sim_matrix = cosine_similarity_chunked(test_embeds, train_embeds, chunk_size=8).cpu().numpy()
|
||
|
|
||
|
# %%
|
||
|
# the following function takes in a full cos_sim_matrix
|
||
|
# condition_source: boolean selectors of the source embedding
|
||
|
# condition_target: boolean selectors of the target embedding
|
||
|
def find_closest(cos_sim_matrix, condition_source, condition_target):
|
||
|
# subset_matrix = cos_sim_matrix[condition_source]
|
||
|
# except we are subsetting 2D matrix (row, column)
|
||
|
subset_matrix = cos_sim_matrix[np.ix_(condition_source, condition_target)]
|
||
|
# we select top k here
|
||
|
# Get the indices of the top 5 maximum values along axis 1
|
||
|
top_k = 5
|
||
|
top_k_indices = np.argsort(subset_matrix, axis=1)[:, -top_k:] # Get indices of top k values
|
||
|
# note that top_k_indices is a nested list because of the 2d nature of the matrix
|
||
|
# the result is flipped
|
||
|
top_k_indices[0] = top_k_indices[0][::-1]
|
||
|
|
||
|
# Get the values of the top 5 maximum scores
|
||
|
top_k_values = np.take_along_axis(subset_matrix, top_k_indices, axis=1)
|
||
|
|
||
|
|
||
|
return top_k_indices, top_k_values
|
||
|
|
||
|
# %%
|
||
|
error_thing_df.index
|
||
|
|
||
|
####################################################
|
||
|
# special find-back code
|
||
|
# %%
|
||
|
select_idx = 2884
|
||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||
|
|
||
|
top_k_indices, top_k_values = find_closest(
|
||
|
cos_sim_matrix=cos_sim_matrix,
|
||
|
condition_source=condition_source,
|
||
|
condition_target=condition_target)
|
||
|
|
||
|
print(top_k_indices)
|
||
|
print(top_k_values)
|
||
|
# %%
|
||
|
train_df.iloc[top_k_indices[0]]
|
||
|
# %%
|
||
|
test_df[test_df.index == select_idx]
|
||
|
####################################################
|
||
|
|
||
|
# %%
|
||
|
# make function to compute similarity of closest retrieved result
|
||
|
def compute_similarity(select_idx):
|
||
|
condition_source = test_df['tag_description'] == test_df[test_df.index == select_idx]['tag_description'].tolist()[0]
|
||
|
condition_target = np.ones(train_embeds.shape[0], dtype=bool)
|
||
|
top_k_indices, top_k_values = find_closest(
|
||
|
cos_sim_matrix=cos_sim_matrix,
|
||
|
condition_source=condition_source,
|
||
|
condition_target=condition_target)
|
||
|
|
||
|
return np.mean(top_k_values[0])
|
||
|
|
||
|
# %%
|
||
|
def print_summary(similarity_scores):
|
||
|
# Convert list to numpy array for additional stats
|
||
|
np_array = np.array(similarity_scores)
|
||
|
|
||
|
# Get stats
|
||
|
mean_value = np.mean(np_array)
|
||
|
percentiles = np.percentile(np_array, [25, 50, 75]) # 25th, 50th, and 75th percentiles
|
||
|
|
||
|
# Display numpy results
|
||
|
print("Mean:", mean_value)
|
||
|
print("25th, 50th, 75th Percentiles:", percentiles)
|
||
|
|
||
|
|
||
|
# %%
|
||
|
##########################################
|
||
|
# Analyze the degree of similarity differences between correct and incorrect results
|
||
|
|
||
|
# %%
|
||
|
# compute similarity scores for all values in error_thing_df
|
||
|
similarity_thing_scores = []
|
||
|
for idx in error_thing_df.index:
|
||
|
similarity_thing_scores.append(compute_similarity(idx))
|
||
|
print_summary(similarity_thing_scores)
|
||
|
|
||
|
|
||
|
# %%
|
||
|
similarity_property_scores = []
|
||
|
for idx in error_property_df.index:
|
||
|
similarity_property_scores.append(compute_similarity(idx))
|
||
|
print_summary(similarity_property_scores)
|
||
|
|
||
|
# %%
|
||
|
similarity_correct_scores = []
|
||
|
for idx in correct_df.index:
|
||
|
similarity_correct_scores.append(compute_similarity(idx))
|
||
|
print_summary(similarity_correct_scores)
|
||
|
|
||
|
|
||
|
|
||
|
# %%
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
# Sample data
|
||
|
list1 = similarity_thing_scores
|
||
|
list2 = similarity_property_scores
|
||
|
list3 = similarity_correct_scores
|
||
|
|
||
|
# Plot histograms
|
||
|
bins = 50
|
||
|
plt.hist(list1, bins=bins, alpha=0.5, label='List 1', density=True)
|
||
|
plt.hist(list2, bins=bins, alpha=0.5, label='List 2', density=True)
|
||
|
plt.hist(list3, bins=bins, alpha=0.5, label='List 3', density=True)
|
||
|
|
||
|
# Labels and legend
|
||
|
plt.xlabel('Value')
|
||
|
plt.ylabel('Frequency')
|
||
|
plt.legend(loc='upper right')
|
||
|
plt.title('Histograms of Three Lists')
|
||
|
|
||
|
# Show plot
|
||
|
plt.show()
|
||
|
|
||
|
###########################################
|
||
|
# %%
|
||
|
# why do similarities of 97% still map correctly?
|
||
|
score_array = np.array(similarity_correct_scores)
|
||
|
# %%
|
||
|
sum(score_array < 0.95)
|
||
|
# %%
|
||
|
correct_df[score_array < 0.95]['tag_description'].index.to_list()
|
||
|
# %%
|